Cell and Tissue Biology

, Volume 5, Issue 3, pp 235–242 | Cite as

Sodium butyrate induces cell senescence in transformed rodent cells resistant to apoptosis

  • Z. V. ChitikovaEmail author
  • N. D. Aksenov
  • V. A. Pospelov
  • T. V. Pospelova


The capacity of HDAC inhibitor sodium butyrate to induce senescence in cells derived from rat embryonic fibroblasts and transformed by E1A + E1B19 kDa oncogene has been studied. These transformants are resistant to apoptosis in response to γ-irradiation and the deprivation of growth factors. The process of cell senescence was investigated by analyzing cell growth curves, G1/S and G2/M cell cycle arrest and senescent associated β-galactosidase expression. The irreversibility of the antiproliferative activity of sodium butyrate was analyzed by clonogenic assay.

We show that sodium butyrate suppresses proliferation and induces senescence in the E1A + E1B19 kDa transformed cells. Interestingly, NaB induced growth arrest due to the accumulation of cells in the G2/M phase; they are not tetraploid, but mainly binuclear cells. Thus, in the case of NaB induces senescence in E1A + E1B19 kDa transformed fibroblasts, the observed suppression of cell proliferation may be a result of cytokinesis failure, which leads to the formation of binuclear and multinuclear cells incapable of proliferating.


sodium butyrate histone deacetylase inhibitor cell senescence transformants E1A + E1B19kDa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramova, M.V., Pospelova, T.V., Nikulenkov, F.P., Hollander, C.M., Fornace, A.J. Jr., and Pospelov, V.A., G1/S Arrest Induced by Histone Deacetylase Inhibitor Sodium Butyrate in E1A+Ras-Transformed Cells Is Mediated Through Down-regulation of E2F Activity and Stabilization of beta-Catenin, J. Biol. Chem., 2006, vol. 281, no. 30, pp. 21040–21051.PubMedCrossRefGoogle Scholar
  2. Abramova, M.V., Svetlikova, S.B., Aksenov, N.D., Pospelova, T, V., and Pospelov, V.A., Histone Deacetylase Inhibitor Blocks Proliferation of Cells Transformed with Oncogenes E1A and CHa-Ras, Tsitologiia, 2003, vol. 45, no. 11, pp. 1100–1108.PubMedGoogle Scholar
  3. Arber, S., Regulation of Actin Dynamics Through Phosphorylation of Cofilin by LIM-Kinase, Nature, 1998, vol. 393, pp. 805–809.PubMedCrossRefGoogle Scholar
  4. Bamburg, J.R., Proteins of the ADF/Cofilin Family: Essential Regulators of Actin Dynamics, Annu. Rev. Cell Biol., 1999, vol. 15, pp. 185–230.CrossRefGoogle Scholar
  5. Blagosklonny, M.V., An Anti-Aging Drug Today: From Senescence-Promoting Genes to Anti-aging Pill, Drug Disc Today, 2007, vol. 12, pp. 218–224.CrossRefGoogle Scholar
  6. Brichkina, A.I., Aksenov, N.D., Pospelov, V.A., and Pospelova, T.V., Analysis of Transient G1/S Arrest in E1A+E1B-19 kDa Transformed Cells after Ionizing Radiation, Tsitologiia, 2003, vol. 45, no. 12, pp. 1203–1210.PubMedGoogle Scholar
  7. Brichkina, A.I., Tararova, N.D., Aksenov, N.D., Pospelov, V.A., and Pospelova, T.V., Rat Embryo Fibroblasts Transformed by Complementation with Oncogenes E1A+E1B-19 and E1A+cHa-Ras Differ in the Ability to Realize the G1/S Block in Serum Free Media, Tsitologiia, 2001, vol. 43, no. 11, pp. 1024–1030.PubMedGoogle Scholar
  8. Bulavin, D.V., Tararova, N.D., Aksenov, N.D., Pospelov, V.A., and Pospelova, T.V., Deregulation of P53/p21/Cip1/Waf1 Pathway Contributes to Polyploidy and Apoptosis of E1A+cHa-ras Transformed Cells after γ-Irradiation, Oncogene, 1999, vol. 18, pp. 5611–5619.PubMedCrossRefGoogle Scholar
  9. Bulavin, D.V., Tararova, N.D., Brichkina, A.I., Aksenov, N.D., Pospelov, V.A., and Pospelova, T.V., Transfection with the E1A and E1B-19 kDa Oncogenes Does not Prevent Rat Embryo Fibroblasts from Cell Cycle Arrest after gamma-Radiation, Mol. Biol., 2002, vol. 36, no. 1, pp. 58–65.CrossRefGoogle Scholar
  10. Burgess, A., Pavey, S., Warrener, R., Hunter, L.J., Piva, T.J., Musgrove, E.A., Saunders, N., Parsons, P.G., and Gabrielli, B.G., Up-regulation of P21/WAF1/CIP1 by Histone Deacetylase Inhibitors Reduces Their Cytotoxicity, Mol. Pharmacol., 2001, vol. 60, pp. 828–837.PubMedGoogle Scholar
  11. Burgess, A., Ruefli, A., Beamish, H., Warrener, R., Saunders, N., Johnstone, R., and Gabrielli, B., Histone Deacetylase Inhibitors Specifically Kill Nonproliferating Tumor Cells, Oncogene, 2004, vol. 23, pp. 6693–6701.PubMedCrossRefGoogle Scholar
  12. Campisi, J., Cellular Senescence as a Tumor-suppressor Mechanism, Trends Cell. Biol., 2001, vol. 11, pp. 27–31.Google Scholar
  13. Campisi, J., Suppressing Cancer: the Importance of Being Senescent, Science, 2005, vol. 309, pp. 886–887.PubMedCrossRefGoogle Scholar
  14. Caron, C., Boyault, C., and Khochbin, S., Regulatory Cross-Talk between Lysine Acetylation and Ubiqutination: Role in the Control of Protein Stability, Bioessays, 2005, vol. 27, pp. 408–415.PubMedCrossRefGoogle Scholar
  15. Collado, M., Blasco, M.A., and Serrano, M., Cellular Senescence in Cancer and Aging, Cell, 2007, vol. 130, pp. 223–233.PubMedCrossRefGoogle Scholar
  16. Coradini, D., Biffi, A., Costa, A., Pellizzaro, C., Pirronello, E., and Di Fronzo, G., Effect of Sodium Butyrate on Human Breast Cancer cell Lines, Cell Prolif., 1997, vol. 30, pp. 149–159.PubMedCrossRefGoogle Scholar
  17. Demidenko, Z.N., and Blagosklonny, M.V., Quantifying Pharmacologic Suppression of Cellular Senescence: Prevention of Cellular Hypertrophy Versus Preservation of Proliferative Potential, Aging, 2009, vol. 1, pp. 1008–1016.PubMedGoogle Scholar
  18. Dimri, G.P., Lee, X.H., Basile, G., Acosta, M., Scott, C., Roskelly, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M., and Campisi, J., A Biomarker that Identifies Senescence Human Cells in Culture and in Aging Skin in vivo, Proc. Natl. Acad. Sci. USA., 1995, vol. 92, pp. 9363–9367.PubMedCrossRefGoogle Scholar
  19. Drewinko, B., Patchen, M., Yang, L.I., and Barlogie, B., Differential Killing Efficacy of Twenty Antitumor Drugs on Proliferating and Nonproliferating Human Tumor Cells, Cancer Res, 1981, vol. 41, pp. 2328–2333.PubMedGoogle Scholar
  20. Elledge, SJ., Cell Cycle Checkpoints: Preventing an Identity Crisis, Science, 1996, vol. 274, pp. 1664–72.PubMedCrossRefGoogle Scholar
  21. Glotzer, M., Animal cell Cytokinesis, Annu. Rev. Cell Dev., 1998, vol. 17, pp. 351–386.CrossRefGoogle Scholar
  22. Grnroos, E., Hellman, U., Heldin, C.H., and Eriksson, J., Control of SMAD7 Stability by Competition between Acetylation and Ubiquitination, Mol. Cell., 2002, vol. 10, pp. 438–493.Google Scholar
  23. Hanahan, D., and Weinberg, RA., The Hallmarks of Cancer, Cell, 2000, vol. 7, pp. 100, pp. 57–70.Google Scholar
  24. Hartwell, LH, and Kastan, MB., Cell Cycle Control and Cancer, Science, 1994, vol. 266, pp. 1821–1828.PubMedCrossRefGoogle Scholar
  25. Hisaoka, M., Tanaka, A., and Hashimoto, H., Molecular Alterations of H-warts/LATS1 Tumor Suppressor in Human soft Tissue Sarcoma, Lab. Invest., 2002, vol. 82, pp. 1427–1435.PubMedGoogle Scholar
  26. Itahana, K., Dimri, G., and Campisi, J., Regulation of Cellular Senescence by p53, Eur. J. Biochem., 2001, vol. 268, pp. 2784–2791.PubMedCrossRefGoogle Scholar
  27. John, M.A., Mice Deficient of Lats1 Develop Soft Tissue Sarcomas, Ovarian Tumors and Pituitary Dysfunction, Nature Genet., 1999, vol. 21, pp. 2449–2462.CrossRefGoogle Scholar
  28. Johnstone, R.W., Histone-Deacetylase Inhibitors: Novel Drugs for the Treatment of Cancer, Nat. Rev. Drug Discov., 2002, vol. 1, pp. 287–299.PubMedCrossRefGoogle Scholar
  29. Justice, R.W., Zilian, O., Woods, D.F., Noll, M., and Bryant, P.J., The Drosophila Tumor Suppressor Gene Warts Encodes a Homolog of Human Myotonic Dystrophy Kinase and Is Required for the Control of Cell Shape and Proliferation, Genes Dev., 1995, vol. 1, pp. 9, no. 5, pp. 534–546.Google Scholar
  30. Kelly, W.K., O’Connor, O.A., and Marks, P.A., Histone Deacetylase Inhibitors: From Target to Clinical Trials, Expert Opin. Investig. Drugs, 2002, vol. 11, pp. 1695–1713.PubMedCrossRefGoogle Scholar
  31. Lin, A.W., Barradas, M., Stone, J.S., van, Alest, L., Serrano, M., and Lowe, S.W., Premature Senescence Involving p53 and p16 Is Activated in Response to Constitutive MEK/MAPK Mitogenic Signaling, Genes Dev., 1998, vol. 12, pp. 3008–3019.PubMedCrossRefGoogle Scholar
  32. Luger, K., and Richmond, T.J., The Histone Tails of the Nucleosome, Curr. Opin. Genet. Dev., 1998, vol. 8, pp. 140–146.PubMedCrossRefGoogle Scholar
  33. Luger, K., Mader, A.W., Richmond, R.K., and Sargent, D.F., and, Richmond, T.J., Crystal Structure of the Nucleosome Core Particle at 2.8, Nature, 1997, vol. 389, pp. 251–260.PubMedCrossRefGoogle Scholar
  34. Luong, Q.T, O’Kelly, J., Braunstein, G.D., Hershman, J.M., and Koeffler, H.P., Antitumor Activity of Suberoylanilide Hydroxamic Acid against Thyroid Cancer Cell Lines in vitro and in vivo, Clin. Cancer Res., 2006, vol. 15, pp. 12, pp. 5570–5577.Google Scholar
  35. Mann, B.S., Johnson, J.R., Cohen, M.H., Justice, R., and Pazdur, R., FDA Approval Summary: Vorinostat for Treatment of Advanced Primary Cutaneous T cell Lymphoma, Oncologist, 2007, vol. 12, pp. 1247–1252.PubMedCrossRefGoogle Scholar
  36. Marks, P.A., Richon, V.M., and Rifkind, R.A., Histone Deacetylase: Inducers of Differentiation or Apoptosis of Transformed Cells, 2000. J. Natl. Cancer Inst., 2000, vol. 92, pp. 1210–1216.CrossRefGoogle Scholar
  37. Mathon, N.F., and Lloyd, A.C., Cell Senescence and Cancer, Nature Rev. Cancer, 2001, vol. 1, pp. 203–213.CrossRefGoogle Scholar
  38. Munro, J., Barr, N.I., Ireland, H., Morrison, V., and Parkinson, E.K., Histone Deacetylase Inhibitors Induce a Senescence-like State in Human Cells by P16-Dependent Mechanism that is Independent of a Mitotic Clock, Exp. Cell Res., 2004, vol. 295, pp. 525–538.PubMedCrossRefGoogle Scholar
  39. Pellizzaro, C., Coradini, D., Abolafio, G., and Daidone, M.G., Modulation of Cell Cycle-Related Proteins but not p53 Expression by Sodium Butyrate in a Human Non-Small Lung Cancer Cell Line, Int. J. Cancer., 2001, vol. 91, pp. 658–664.CrossRefGoogle Scholar
  40. Pospelova, T.V., Kislyakova, T.V., Medvedev, A.V., Svetlikova, S.B., and Pospelov, V.A., The Characteristics of the Transformed Phenotype and the Expression of Indicator Plasmids in the Cells of Rat Embryonic Fibroblasts Immortalized by Oncogene E1Aad5 and Transformed by Oncogenes E1Aad5+c-Ha-Ras, Tsitologiia, 1990, vol. 32, no. 2, pp. 148–155.PubMedGoogle Scholar
  41. Pospelova, T.V., Transformation of Normal Cells with Oncogenic DNA Sequences, in Metody kul’tivirovaniya kletok (Cell Culture Methods), Leningrad: Nauka, 1998, pp. 221–231.Google Scholar
  42. Qui, L., Burgess, A., Fairlie, D.P., Leonard, H., Parsons, P.G., and Gabrielli, B.G., Histone Deacetylase Inhibitors Trigger a G2 Checkpoint in Normal Cells That is Defective in Tumor Cells, Mol. Cell Biol., 2000, vol. 11, pp. 2069–2083.Google Scholar
  43. Richon, V.M., Sandhoff, T.W., Rifkind, R.A., and Marks, P.A., Histone Deacetylase Inhibitor Selectively Induces P21WAF1 Expression and Gene-Associated Histone A 10014–10019.Google Scholar
  44. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W., Oncogenic Ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and P16/INK4a, Cell, 1997, vol. 88, pp. 593–602.PubMedCrossRefGoogle Scholar
  45. Shay, J.W., and Roninson, I.B., Hallmarks of Senescence in Carcinogenesis and Cancer Therapy, Oncogene, 2004, vol. 23, pp. 2919–2933.PubMedCrossRefGoogle Scholar
  46. Sparks, C.A., Morphew, M., and McCollum, D., Sid2p, a Spindle Pole Body Kinase that Regulates the Onset Cytokinesis, J. Cell Biol., 1999, vol. 146, pp. 777–790.PubMedCrossRefGoogle Scholar
  47. Taddei, A., Maison, C., Roche, D., and Almouzni, G., Reversible Disruption of Pericentric Heterochromatin and Centromere Function by Inhibiting Deacetylases, Nat. Cell Biol., 2001, vol. 3, pp. 114–120.PubMedCrossRefGoogle Scholar
  48. Takahashi, A., Ohtani, N., Yamakoshi, K., Iida, Shin-ichi, Tahara, H., Nakayama, K., Nakayama, K.I., Ide, T., Saya, H., and Hara, E., Mitogenic Signaling and the P16/INK4a-Rb Pathway Cooperate to Enforce Irreversible Cellular Senescence, Nature Cell, 2006, vol. 8, pp. 1291–1297.CrossRefGoogle Scholar
  49. Terao, Y., Nishida, J., Horiuchi, S., Rong, F., Ueoka, Y., Matsuda, T., Kato, H., Furugen, Y., Yoshida, K., Kato, K., and Wake, N., Sodium Butyrate Induces Growth Arrest and Senescence-Like Phenotypes in Gynecologic Cancer Cells, Int. J. Cancer, 2001, vol. 94, pp. 257–267.PubMedCrossRefGoogle Scholar
  50. Vermeulen, K., Van, Bockstaele, D.R., and Berneman, Z.N., The Cell Cycle: A Review of Regulation, Deregulation and Therapeutic Targets in Cancer, Cell Prolif., 2003, vol. 36, pp. 131–149.PubMedCrossRefGoogle Scholar
  51. White, E., and Cipriani, R., Altered of Adenovirus E1B Proteins in Transformation Cells That Express the 19-kDa Protein, Mol. Cell Biol., 1990, vol. 10, pp. 120–130.PubMedGoogle Scholar
  52. Xu, T., Wang, W., Zhang, S., Stewart, R.A., and Yu, W., Identifying Tumor Supressors in Genetic Mosaic: the Drosophila lats Gene Encodes a Putative Protein Kinase, Development, 1995, vol. 121, pp. 1053–1063.PubMedGoogle Scholar
  53. Xu, W.S., Perez, G., Ngo, L., Gui, C.Y., and Marks, P.A., Induction of Polyploidy by Histone Deacetylase Inhibitor: a Pathway for Antitumor Effects, Cancer Res., 2005, vol. 65, no. 17, pp. 7832–7839.PubMedGoogle Scholar
  54. Yang, N., Cofilin Phosphorylation by LIM-kinase 1 and Its Role in Rac-Mediated Actin Reorganization, Nature, 1998, vol. 393, pp. 809–812.PubMedCrossRefGoogle Scholar
  55. Yang, X., Yu, K., Hao, Y., Li, D., Srewart, R., Insogna, K., and Xu, T., LATS1 Tumor Suppressor Affects Cytokinesis by Inhibiting LIMK1, Nature Cell Biol., 2004, vol. 6, pp. 609–617.PubMedCrossRefGoogle Scholar
  56. Zellen, J.A., Peckol, E.L., Tobin, D.M., and Bargmann, C.I., Neuronal Cell Shape and Neurite Initiation Are Regulated by the Ndr Kinase SAX-1, a Member of the Orb6/COT1/Warts Serine/Threonine Kinase Family, Mol. Biol. Cell., 2000, vol. 11, pp. 3177–3190.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Z. V. Chitikova
    • 1
    Email author
  • N. D. Aksenov
    • 1
  • V. A. Pospelov
    • 1
  • T. V. Pospelova
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSaint-PetersburgRussia

Personalised recommendations