Cell and Tissue Biology

, Volume 5, Issue 3, pp 281–293 | Cite as

Spatial arrangement of macro-, midi-, and microchromosomes in transcriptionally active nuclei of growing oocytes in birds of the order galliformes

Article

Abstract

Three-dimensional genome organization in the cell nucleus reflects its functional state and is one of the regulatory levels of gene expression. Thus, the extensive exploration of the relationship between the spatial organization of the genome and its functioning is very important. In this work, the three-dimensional genome organization in growing oocytes of Galliform birds was analyzed in detail. Avian oocytes have giant transcriptionally active nuclei that are distinct from somatic interphase nuclei in their almost complete lack of structural constraints on chromosome decondensation. The radial distribution of three groups of chromosomes with different sizes and gene densities in the nuclei of chicken and Japanese quail oocytes was analyzed by confocal laser scanning microscopy followed by 3D reconstruction. The chromosome position relative to the nuclear center was estimated by analyzing its localization in certain radial nuclear zones and directly measuring the distance from the nuclear center to the terminal regions and center of chromosome gravity. It was shown that, in transcriptionally active nuclei of avian oocytes, chromosomes are localized at a significant distance from the nuclear envelope; gene-rich microchromosomes are localized mainly on the periphery of the region occupied by the whole chromosome set, rather than in the nuclear center. Therefore, the radial distribution of lampbrush chromosomes in oocyte nuclei differs from the ordered spatial arrangement of chromosomes in the interphase nucleus with gene-rich chromosome territories being located at the nuclear center and gene-poor territories positioned at the nuclear periphery. By visualizing 3D-preserved lampbrush chromosomes in the intact nucleus, we confirmed the presence of repulsion forces between lateral loops of lampbrush half-bivalents and the lack of interactions between heterochromatic segments of different bivalents at the lampbrush stage of oogenesis.

Keywords

avian oogenesis cell nucleus domestic animals genome architecture lampbrush chromosomes telomeres transcription three-dimensional reconstruction 

Abbreviations used

CLSM

confocal lazer scanning microscopy

LB

lampbrush

FISH

fluorescence in situ hybridization

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albiez, H., Cremer, M., Tiberi, C., Vecchio, L., Schermelleh, L., Dittrich, S., Küpper, K., Joffe, B., Thormeyer, T., von, Hase, J., Yang, S., Rohr, K., Leonhardt, H., Solovei, I., Cremer, C., Fakan, S., and Cremer, T., Chromatin Domains and the Interchromatin Compartment form Structurally Defined and Functionally Interacting Nuclear Networks, Chromosome Res., 2006, vol. 14, pp. 707–733.PubMedCrossRefGoogle Scholar
  2. Bartova, E. and Kozubek, S., Nuclear Architecture in the Light of Gene Expression and Cell Differentiation Studies, Biol. Cell, 2006, vol. 98, pp. 323–336.PubMedCrossRefGoogle Scholar
  3. Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., Müller, S., Eils, R., Cremer, C., Speicher, M., and Cremer, T., Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes, PLoS Biol., 2005, vol. 3, pp. 826–842.CrossRefGoogle Scholar
  4. Boyle, S., Gilchrist, S., Bridger, J., Mahy, N., Ellis, J., and Bickmore, W., The Spatial Organization of Human Chromosomes within the Nuclei of Normal and Emerin-Mutant Cells, Hum. Mol. Genet., 2001, vol. 10, pp. 211–219.PubMedCrossRefGoogle Scholar
  5. Burt, D., Origin and Evolution of Avian Microchromosomes, Cytogenet. Genome Res., 2002, vol. 96, pp. 97–112.PubMedCrossRefGoogle Scholar
  6. Callan, H.G., Lampbrush Chromosomes, Mol. Biol. Biochem. Biophys., 1986, vol. 36, pp. 1–254.PubMedGoogle Scholar
  7. Chelysheva, L.A., Solovei, I.V., Rodionov, A.V., Yakovlev, A.F., and Gaginskaya, E.R., The Lampbrush Chromosomes of the Chicken. Cytological Maps of the Macrobivalents, Tsitologiia, 1990, vol. 32, no. 4, pp. 303–316.PubMedGoogle Scholar
  8. Cremer, T., Cremer, M., Dietzel, S., Müller, S., Solovei, I., and Fakan, S., Chromosome Territories—A Functional Nuclear Landscape, Curr. Opin. Cell. Biol., 2006, vol. 18, pp. 307–316.PubMedCrossRefGoogle Scholar
  9. Cremer, T., Kreth, G., Koester, H., Fink, R.H., Heintzmann, R., Cremer, M., Solovei, I., Zink, D., and Cremer, C., Chromosome Territories, Interchromatin Domain Compartment, and Nuclear Matrix: an Integrated View of the Functional Nuclear Architecture, Crit. Rev. Eukaryot. Gene. Expr., 2000, vol. 10, pp. 179–212.PubMedGoogle Scholar
  10. Croft, J., Bridger, J., Boyle, S., Perry, P., Teague, P., and Bickmore, W., Differences in the Localization and Morphology of Chromosomes in the Human Nucleus, J. Cell Biol., 1999, vol. 145, pp. 1119–1131.PubMedCrossRefGoogle Scholar
  11. Derjusheva, S., Kurganova, A., Krasikova, A., Saifitdinova, A., Habermann, F., and Gaginskaya, E., Precise Identification of Chicken Chromosomes in the Lampbrush Form using Chromosome Painting Probes, Chromosome Res., 2003, vol. 11, pp. 749–757.PubMedCrossRefGoogle Scholar
  12. Federico, C., Cantarella, C., Scavo, C., Saccone, S., Bed’Hom, B., and Bernardi, G., Avian Genomes: Different Karyotypes but a Similar Distribution of the GC-Richest Chromosome Regions at Interphase, Chromosome Res., 2005, vol. 13, pp. 785–793.PubMedCrossRefGoogle Scholar
  13. Fedorova, E. and Zink, D., Nuclear Architecture and Gene Regulation, Biochim. Biophys. Acta., 2008, vol. 1783, pp. 2174–2184.PubMedCrossRefGoogle Scholar
  14. Foster, H., Abeydeera, L., Griffin, D., and Bridger, J., Non-Random Positioning in Mammalian Sperm Nuclei, with Migration of the sex Chromosomes during Late Spermatogenesis, J. Cell Sci., 2005, vol. 118, pp. 1811–1820.PubMedCrossRefGoogle Scholar
  15. Gaginskaya, E. and Gruzova, M., Characteristics of Chaffinch Ontogeny, Tsitologiia, 1969, vol. 11, no. 10, pp. 1241–1251.Google Scholar
  16. Gaginskaya, E. and Gruzova, M., Identification of Amplified rDNA in Ovarian Cells of Some Insects and Birds by Hybridization of Nucleic Acids in Preparations, Tsitologiia, 1975, vol. 17, no. 10, pp. 1132–1137.Google Scholar
  17. Gaginskaya, E., Kulikova, T., and Krasikova, A., Avian Lampbrush Chromosomes: A Powerful Tool for Exploration of Genome Expression, Cytogenet. Genome Res., 2009, vol. 124, pp. 251–267.PubMedCrossRefGoogle Scholar
  18. Galkina, S., Deryusheva, S., Fillon, V., Vignal, A., Crooijmans, R., Groenen, M., Rodionov, A., and Gaginskaya, E., FISH on Avian Lampbrush Chromosomes Produces Higher Resolution Gene Mapping, Genetica, 2006, vol. 128, pp. 241–251.PubMedCrossRefGoogle Scholar
  19. Gall, J. and Wu, Z., Examining the Contents of Isolated Xenopus Germinal Vesicles, Methods, 2010, vol. 51, pp. 45–51.PubMedCrossRefGoogle Scholar
  20. Habermann, F., Cremer, M., Walter, J., Kreth, G., von, Hase, J., Bauer, K., Wienberg, J., Cremer, C., Cremer, T., and Solovei, I., Arrangement of Macro- and Microchromosomes in Chicken Cells, Chromosome Res., 2001, vol. 9, pp. 569–584.PubMedCrossRefGoogle Scholar
  21. ICGSC (International Chicken Genome Sequencing Consortium), Sequence and Comparative Analysis of the Chicken Genome Provide Unique Perspectives on Vertebrate Evolution, Nature, 2004, vol. 432, pp. 695–716.CrossRefGoogle Scholar
  22. Khutinaeva, M.A., Kropotova, E.V., and Gaginskaya, E.R., The Characteristics of the Morphofunctional Organization of the Lampbrush Chromosomes from the Oocytes of the Rock Dove, Tsitologiia, 1989, vol. 31, no. 10 1185–1192.PubMedGoogle Scholar
  23. Küper, K., Kölbl, A., Biener, D., Dittrich, S., von, Hase, J., Thormeyer, T., Fiegler, H., Carter, N., Speicher, M., Cremer, T., and Cremer, M., Radial Chromatin Positioning is Shaped by Local gene Density, not by Gene Expression, Chromosoma, 2007, vol. 116, pp. 285–306.CrossRefGoogle Scholar
  24. Krasikova, A., Barbero, J., and Gaginskaya, E., Cohesion Proteins Are Present in Centromere Protein Bodies Associated with Avian Lampbrush Chromosomes, Chromosome Res., 2005, vol. 13, pp. 675–685.PubMedCrossRefGoogle Scholar
  25. Krasikova, A., Daks, A., Zlotina, A., and Gaginskaya, E., Polymorphic Heterochromatic Segments in Japanese Quail Microchromosomes, Cytogenet. Genome Res., 2009, vol. 126, pp. 148–155.PubMedCrossRefGoogle Scholar
  26. Krasikova, A., Deryusheva, S., Galkina, S., Kurganova, A., Evteev, A., and Gaginskaya, E., On the Positions of Centromeres in Chicken Lampbrush Chromosomes, Chromosome Res., 2006, vol. 14, pp. 777–789.PubMedCrossRefGoogle Scholar
  27. Lanctôtt, C., Cheutin, T., Cremer, M., Cavalli, G., and Cremer, T., Dynamic Genome Architecture in the Nuclear Space: Regulation of Gene Expression in Three Dimensions, Nat. Rev. Genet., 2007, vol. 8, pp. 104–115.CrossRefGoogle Scholar
  28. Mahy, N., Perry, P., and Bickmore, W., Gene Density and Transcription Influence the Localization of Chromatin Outside of Chromosome Territories Detectable by FISH, J. Cell Biol., 2002, vol. 159, pp. 753–763.PubMedCrossRefGoogle Scholar
  29. Marko, J. and Siggia, E., Polymer Models of Meiotic and Mitotic Chromosomes, Mol. Biol. Cell, 1997, vol. 8, pp. 2217–2231.PubMedGoogle Scholar
  30. Mateos-Langerak, J., Goetze, S., Leonhardt, H., Cremer, T., van, Driel, R., and Lanctôtt, C., Nuclear Architecture: Is It Important for Genome Function and Can We Prove It?, J. Cell Biochem., 2007, vol. 102, pp. 1067–1075.PubMedCrossRefGoogle Scholar
  31. Misteli, T., Beyond the Sequence: Cellular Organization of Genome Function, Cell, 2007, vol. 128, pp. 787–800.PubMedCrossRefGoogle Scholar
  32. Morgan, G., Lampbrush Chromosomes and Associated Bodies: New Insights into Principles of Nuclear Structure and Function, Chromosome Res., 2002, vol. 10, pp. 177–200.PubMedCrossRefGoogle Scholar
  33. Morgan, G., Working with Oocyte Nuclei: Cytological Preparations of Active Chromatin and Nuclear Bodies from Amphibian Germinal Vesicles, Methods Mol. Biol., 2008, vol. 463, pp. 55–66.PubMedCrossRefGoogle Scholar
  34. O’Brien, T.P., Bult, C.J., Cremer, C., Grunze, M., Knowles, B.B., Langowski, J., McNally, J., Pederson, T., Politz, J.C., Pombo, A., Schmahl, G., Spatz, J.P., and van Driel, R., Genome Function and Nuclear Architecture: From Gene Expression to Nanoscience, Genome Res., 2003, vol. 13, pp. 1029–1041.PubMedCrossRefGoogle Scholar
  35. Razin, S., Iarovaia, O., Sjakste, N., Sjakste, T., Bagdoniene, L., Rynditch, A., Eivazova, E., Lipinski, M., and Vassetzky, Y., Chromatin Domains and Regulation of Transcription, J. Mol. Biol., 2007, vol. 369, pp. 597–607.PubMedCrossRefGoogle Scholar
  36. Razin, S., Spatial Organization of the Eukaryotic Genome and the Action of Epigenetic Mechanisms, Genetika., 2006, vol. 42, pp. 1605–1614.PubMedGoogle Scholar
  37. Roberts, R., Iatropoulou, A., Ciantar, D., Stark, J., Becker, D., Franks, S., and Hardy, K., Follicle-Stimulating Hormone Affects Metaphase I Chromosome Alignment and Increases Aneuploidy in Mouse Oocytes Matured in vitro, Biol. Reprod., 2005, vol. 72, pp. 107–118.PubMedCrossRefGoogle Scholar
  38. Rodionov, A. and Chechik, M., Lampbrush Chromosomes in the Japanese Quail Coturnix coturnix japonica: Cytological Maps of Macro Chromosomes and Meiotic Crossover Frequency in Females, Genetika, 2002, vol. 38, pp. 1246–1251.PubMedGoogle Scholar
  39. Rodionov, A., Micro vs Macro: Structural-Functional Organization of Avian Micro- and Macrochromosomes, Genetika, 1996, vol. 32, pp. 597–608.PubMedGoogle Scholar
  40. Ronneberger, O., Baddeley, D., Scheipl, F., Verveer, P., Burkhardt, H., Cremer, C., Fahrmeir, L., Cremer, T., and Joffe, B., Spatial Quantitative Analysis of Fluorescently Labeled Nuclear Structures: Problems, Methods, Pitfalls, Chromosome Res., 2008, vol. 16, pp. 523–562.PubMedCrossRefGoogle Scholar
  41. Sadoni, N., Langer, S., Fauth, C., Bernardi, G., Cremer, T., Turner, B., and Zink, D., Nuclear Organization of Mammalian Genomes, Polar Chromosome Territories Build up Functionally Distinct Higher Order Compartments, J. Cell Biol., 1999, vol. 146, pp. 1211–1226.PubMedCrossRefGoogle Scholar
  42. Saifitdinova, A., Derjusheva, S., Krasikova, A., and Gaginskaya, E., Lampbrush Chromosomes of the Chaffinch Fringilla coelebs L., Chromosome Res., 2003, vol. 11, pp. 99–113.PubMedCrossRefGoogle Scholar
  43. Schmid, M., Nanda, I., Hoehn, H., Schartl, M., Haaf, T., Buerstedde, J.M., Arakawa, H., Caldwell, R.B., Weigend, S., Burt, D.W., Smith, J., Griffin, D.K., Masabanda, J.S., Groenen, M.A., Crooijmans, R.P., Vignal, A., Fillon, V., Morisson, M., Pitel, F., Vignoles, M., Garrigues, A., Gellin, J., Rodionov, A.V., Galkina, S.A., Lukina, N.A., Ben-Ari, G., Blum, S., Hillel, J., Twito, T., Lavi, U., David, L., Feldman, M.W., Delany, M.E., Conley, C.A., Fowler, V.M., Hedges, S.B., Godbout, R., Katyal, S., Smith, C., Hudson, Q., Sinclair, A., and Mizuno, S., Second Report on Chicken Genes and Chromosomes, Cytogenet. Genome Res., 2005, vol. 109, pp. 415–479.PubMedCrossRefGoogle Scholar
  44. Schofer, C. and Weipoltshammer, K., Gene Dynamics and Nuclear Architecture during Differentiation, Differentiation, 2008, vol. 76, pp. 41–56.PubMedCrossRefGoogle Scholar
  45. Skinner, B., Vlker, M., Ellis, M., and Griffin, D., An Appraisal of Nuclear Organisation in Interphase Embryonic Fibroblasts of Chicken, Turkey and Duck, Cytogenet. Genome Res., 2009, vol. 126, pp. 156–164.PubMedCrossRefGoogle Scholar
  46. Smith, J., Bruley, C., Paton, I., Dunn, I., Jones, C., Windsor, D., Morrice, D., Law, A., Masabanda, J., Sazanov, A., Waddington, D., Fries, R., and Burt, D., Differences in Gene Density on Chicken Macrochromosomes and Microchromosomes, Anim. Genet., 2000, vol. 31, pp. 96–103.PubMedCrossRefGoogle Scholar
  47. Solovei, I., Gaginskaya, E., Hutchison, N., and Macgregor, H., Avian Sex Chromosomes in the Lampbrush Form: the ZW Lampbrush Bivalents from Six Species of Bird, Chromosome Res., 1993, vol. 1, pp. 153–166.PubMedCrossRefGoogle Scholar
  48. Solovei, I., Joffe, B., and Hori, T., Unordered Arrangement of Chromosomes in the Nuclei of Chicken Spermatozoa, Chromosoma, 1998, vol. 107, pp. 184–188.PubMedCrossRefGoogle Scholar
  49. Stadler, S., Schnapp, V., Mayer, R., Stein, S., Cremer, C., Bonifer, C., Cremer, T., and Dietzel, S., The Architecture of Chicken Chromosome Territories Changes during Differentiation, BMC Cell Biol., 2004, vol. 5, pp. 44, doi: 10.1186/1471-2121-5-44.PubMedCrossRefGoogle Scholar
  50. Sun, H., Shen, J., and Yokota, H., Size-dependent Positioning of Human Chromosomes in Interphase Nuclei, Biophysics, 2000, vol. J 79, pp. 184–190.Google Scholar
  51. Tanabe, H., Habermann, F., Solovei, I., Cremer, M., and Cremer, T., Non-random Radial Arrangements of Interphase Chromosome Territories: Evolutionary Considerations and Functional Implications, Mutat. Res., 2002, vol. 504, pp. 37–45.PubMedGoogle Scholar
  52. van Driel, R., Fransz, P., and Verschure, P., The Eukaryotic Genome: A System Regulated at Different Hierarchical Levels, J. Cell Sci., 2003, vol. 116, pp. 4067–4075.PubMedCrossRefGoogle Scholar
  53. Volpi, E., Chevret, E., Jones, T., Vatcheva, R., Williamson, J., Beck, S., Campbell, R., Goldsworthy, M., Powis, S., Ragoussis, J., Trowsdale, J., and Sheer, D., Large-Scale Chromatin Organization of the Major Histocompatibility Complex and Other Regions of Human Chromosome 6 and Its Response to Interferon in Interphase Nuclei, J. Cell Sci., 2000, vol. 113, pp. 1565–1576.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Laboratory of Chromosome Structure and FunctionSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations