Advertisement

Cell and Tissue Biology

, Volume 5, Issue 3, pp 243–254 | Cite as

Cyclic structural changes of endoplasmic reticulum and Golgi complex in hippocampal neurons of ground squirrels during hibernation

  • L. S. Bocharova
  • R. Ya. Gordon
  • V. V. Rogachevsky
  • D. A. Ignat’ev
  • S. S. Khutzian
Article

Abstract

Repetitive remodeling and renewal of the cytoplasmic structures realizing protein synthesis accompanies the cycling of the ground squirrels between torpor and arousal states during hibernation season. Previously, we have shown the partial loss of ribosomes and inactivation of the nucleolus in pyramidal neurons in the hippocampus CA3 area at each bout of torpor with their rapid and full recovery after warming up. In the present paper, we describe reversible structural changes of the endoplasmic reticulum (ER) and Golgi complex (GC) in these neurons. The transformation of the ER form from mainly granular stacks of flattened cisternae to smooth tubules occurs at every entrance in torpor, while the reverse change happens at arousal. The torpor state is also associated with GC fragmentation and loss of their flattened cisternae, i.e., dictiosomes. In neurons, the appearance of the autophagosomal vacuoles containing fragments of membrane structures and ribosomes in torpor state is a sign of the partial destruction of ER and GC. Granular ER restoration, perhaps through assembly from the multilamellar membrane structures, bags or whorls begins in the middle of the torpor bout, while GC dictiosomes reappear only during warming. The ER and GC completely restore their structure 2–3 h after the beginning of arousal. Thus, hibernation represents an example of the structural adaptation of the nerve cell to deep changes in functional and metabolic activity through both the active destruction and renewal of ribosomes, ER, and GC. Perhaps, namely the incomplete ER autophagosomal degradation in torpor provides its rapid renewal at arousal through the reassembly from the preserved fragments.

Keywords

assembly of endoplasmic reticulum Golgi complex ribosomes autophagy neurons hibernation 

Abbreviations used

GC

Golgi complex

AP

autophagosomes

LF

lipofuscin

Tb

brain temperature

ER

endoplasmic reticulum

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altan-Bonnet, N. and Lippincott, J., The Golgi Apparatus: Structure, Function and Cellular Dynamics, in Biogenesis of Cellular Organelles, New York, Academic/Plenum, 2005, pp. 96–110.CrossRefGoogle Scholar
  2. Beau, I., Esclatine, A., and Codongo, P., Lost to Translation: When Autophagy Targets Mature Ribosomes, Trends Cell Biol., 2008, vol. 18, pp. 311–314.PubMedCrossRefGoogle Scholar
  3. Bejarano, E., Bejarano, E., Gabrera, M., Vega, L., Hidalgo, J., and Velasco, A., Golgi Structural Stability and Biogenesis Depend on Associated PKA Activity, J. Cell Sci., 2006, vol. 119, pp. 3764–3775.PubMedCrossRefGoogle Scholar
  4. Bernales, S., McDonald, K.L., and Walter, P., Autophagy Counterbalances Endoplasmic Reticulum Expansion during the Unfolded Protein Response, PLoS Biol., 2006, vol. 4, pp. e423.PubMedCrossRefGoogle Scholar
  5. Bocharova, L.S., Boroviagin, V.L., Dyakonova, T.L., Warton, S.S., and Veprintsev, B.N., Ultrastructural Analysis and RNA Synthesis in a Molluscan Giant Neuron under Electrical Stimulation, Brain Res., 1972, vol. 36, pp. 371–384.PubMedCrossRefGoogle Scholar
  6. Bocharova, L.S., Gordon, R.Ya., and Archipov, V.I., Uridine uptake and RNA synthesis in the brain of torpid and awaken ground squirrels. Comp. Bioch. Physiol., 1992a, vol. 101B, pp. 189–192.Google Scholar
  7. Bocharova, L.S., Gordon, R.Ya., and Popov, V.I., RNA Metabolism in the Brain of Hibernators. II. Rapid Changes in the Neuronal Ribosome RNA Content, in Mechanisms of Natural Hypometabolic States, Puschino: Puschino Research Center, 1992b, pp. 125–132.Google Scholar
  8. Boellaard, J.W. and Schlote, W., Ultrastructural Heterogeneity of Neuronal Lipofuscin in the Normal Cerebral Cortex, Acta Neuropathologica, 1986, vol. 71, pp. 285–294.PubMedCrossRefGoogle Scholar
  9. Borgese, N., Francolini, M., and Snapp, E., Endoplasmatic Reticulum Architecture: Structures in Flux, Cur. Opin. Cell Biol., 2006, vol. 18, pp. 358–364.CrossRefGoogle Scholar
  10. Boroviagin, V.L., Salanki, J, and Zs-Nagy, I., Ultrastructural Alterations in the Cerebral Ganglion of Anadonta C, Induced by Transection of the Cerebro-Visceral Connective, Acta Biol. Acad. Sci. Hung., 1972, vol. 23, pp. 31–45.Google Scholar
  11. Braun, A.D. and Mozhenok, T.P., Nespetsificheskii adaptatsionnyi sindrom kletochnoi sistemy (Nonspecific Adaptation Syndrome of the Cell System), Leningrad: Nauka, 1987.Google Scholar
  12. Carey, H.V., Andrews, M.T., and Martin, S.L., Mammalian Hibernation: Cellular and Molecular Responses to Depressed Metabolism and low Temperature, Physiol. Rev., 2003, vol. 83, pp. 153–1181.Google Scholar
  13. Del, Valle, M., Robledo, I., and Sandoval, I.V., Membrane Flow through the Golgi Apparatus: Specific Disassembly of the Cis-Golgi Network by ATP Depletion, J. Cell Sci., 1999, vol. 112, pp. 4017–4029.PubMedGoogle Scholar
  14. Demin, N.N., Shortanova, T.Kh., and Emirbekov, E.Z, Neirokhimiya zimnei spyachki (Neurochemistry of Hibernation), Leningrad: Nauka, 1988.Google Scholar
  15. Drew, K.L., Buck, C.L., Barnes, B.M., Christian, S.L., Rasley, B., and Harris, M., Central Nervous System Regulation of Mammalian Hibernation: Implications for Metabolic Suppression, J. Neurochem., 2007, vol. 102, pp. 1713–1726.PubMedCrossRefGoogle Scholar
  16. Fanselow, M.S. and Dong, H-W., Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures?, Neuron, 2010, vol. 65, pp. 7–19.PubMedCrossRefGoogle Scholar
  17. Fedorovitch, C.M., Ron, D., and Hampton, R.Y., The Dynamic ER: Experimental Approaches and Current Questions, Cur. Opin. Cell Biol., 2005, vol. 17, pp. 409–414.CrossRefGoogle Scholar
  18. Feldman, D., Swarm, R.L., and Becker, J., Ultrastructural Study of Rat Liver and Liver Neoplasms after Long-Term Treatment with Phenobarbital, Cancer Res., 1981, vol. 41, pp. 2151–2161.PubMedGoogle Scholar
  19. Frerichs, K.U., Smith, C.B., Brenner, M., DeGracia, D.J., Krause, G.S., Marrone, L., Dever, T., and Hallenbeck, J.M., Suppression of Protein Synthesis in Brain during Hibernation Involves Inhibition of Protein Initiation and Elongation, Proc. Natl. Acad. Sci. USA., 1998, vol. 95, pp. 14511–14516.PubMedCrossRefGoogle Scholar
  20. Glick, B.S., Can the Golgi Form de Novo?, Nature Rev. Mol. Cell Biol., 2002, vol. 3, pp. 615–618.CrossRefGoogle Scholar
  21. Golovina, T.N., Proteins and RNA in the Neuron-Neuroglia System of the Supraoptic Nucleus and the Activity of Acid Peptide Hydrolases of the Ground Squirrel Brain after the Awakening from Hibernation, Neirokhimiya, 1988, vol. 7, no. 1, pp. 91–94.Google Scholar
  22. Gordon, R.Ya., Bocharova, L.S., Kruman, I.I., Popov, V.I., Kazantsev, A.P., Khutzian, S.S., and Karnaukhov, V.N., Acridine Orange as an Indicator of the Cytoplasmic Ribosome State, Cytometry, 1997, vol. 29, pp. 215–221.PubMedCrossRefGoogle Scholar
  23. Gordon, R.Ya., Ignatev, D.A., Rogachevskii, V.V., Medvedev, N.I., Kraev, I.V., Patrushev, I.V., Khutsyan, S.S., and Popov, V.I., Changes in the Activity of the Protein-Synthesizing System of Rodent Brain Neurons during Hibernation and Hypothermia, Zh. Evol. Biokhim. Fiziol., 2006, vol. 42, no. 3, pp. 237–243.PubMedGoogle Scholar
  24. Hariri, M., Millane, G., Guimond, M-P., Guay, G., Dennis, J.W., and Nabi, I., Biogenesis of Multilamellar Bodies via Autophagy, Mol. Biol. Cell., 2000, vol. 11, pp. 25–268.Google Scholar
  25. He, C. and Klionsky, D., Regulation Mechanisms and Signaling Pathways of Autophagy, Annu. Rev. Genet., 2009, vol. 43, pp. 67–93.PubMedCrossRefGoogle Scholar
  26. Heller, H.C., Hibernation: Neuronal Aspects, Annual Rev. Physiol., 1979, vol. 40, pp. 305–332.CrossRefGoogle Scholar
  27. Henry, P-G., Russeth, K.P., Tkac, I., Drewer, L.R., Andrews, M.T., and Gruetter, R., Brain Energy Metabolism and Neurotransmission at Near-freezing Temperatures: in vivo 1H MRS Study of a Hibernating Mammal, J. Neurochem., 2007, vol. 101, pp. 1505–1515.PubMedCrossRefGoogle Scholar
  28. Hu, J., Shibata, Y., Voss, C., Shemesh, T., Li, Z., Coughlin, M., Kozlov, M., Rapoport, T., Kawakami, T., Inagi, R., Takano, H., Sato, S., Ingelfinger, J.R., Fujita, T., and Nangaku, M., Endoplasmic Reticulum Stress Induces Autophagy in Renal Proximal Tubular Cells, Nephrol. Dial. Transpl., 2009, vol. 24, pp. 2665–2672.CrossRefGoogle Scholar
  29. Hyer-Hansen, M. and Jttel, M., Connecting Endoplasmic Reticulum Stress to Autophagy by Unfolded Protein Response and Calcium, Cell Death Differ., 2007, vol. 14, pp. 1576–1582.CrossRefGoogle Scholar
  30. Kawakami, T., Inagi, R., Takano, H., Sato, S., Ingelfinger, J.R., Fujita, T., and Nangaku, M., Endoplasmic Reticulum Stress Induces Autophagy in Renal Proximal Tubular Cells, Nephrol. Dial. Transpl., 2009, vol. 24, pp. 2665–2672.CrossRefGoogle Scholar
  31. Komatsu, M., Ueno, T., Waguri, S., Ichiyama, Y., Kominami, E., and Tanaka, K., Constitutive Autophagy: Vital role in Clearance Unfavorable Proteins in Neurons, Cell Death Diff., 2007, vol. 14, pp. 887–894.Google Scholar
  32. Komissarchik, Ya.Yu., Structure and Chemical Composition of Cell Membranes, in Struktura i funktsii biologicheskikh membrane (Structure and Function of Biological Membranes), Moscow: Nauka, 1975, pp. 8–25.Google Scholar
  33. Kraft, C., Deprazes, A., Sohrmann, M., and Peter, H., Mature Ribosomes are Selectively Degraded upon Starvation by an Autophagy Pathway Requiring the Ubp3/Bra5p Ubiquitin Protease, Nature Cell Biol., 2008, vol. 10, pp. 602–610.PubMedCrossRefGoogle Scholar
  34. Krilowicz, B.L., Glotzbach, S.F., and Heller, H., Neuronal Activity During Sleep and Complete Bouts of Hibernation, Am. J. Physiol., 1988, vol. 255, pp. R1008–R1019.PubMedGoogle Scholar
  35. Lajoie, P., Guay, G., Dennis, J.W., and Nabi, I., The Lipid Composition of Autophagic Vacuoles Regulates Expression of Multilamellar Bodies, J. Cell Sci., 2005, vol. 118, pp. 1991–2003.PubMedCrossRefGoogle Scholar
  36. Landhans, M., Hawes, C., Hillmer, S., Hummel, E., and Robinson, D.G., Golgi Regeneration after Brefeldin A Treatment in BY-2 Cells Entails Stack Enlargement and Cysternal Growth Followed by Division, Plant Physiol., 2007, vol. 145, pp. 527–538.CrossRefGoogle Scholar
  37. Lavoie, C., Lanoix, J., Kan, F.W.K., and Paiement, J., Cell-Free Assemble of Rough and Smooth Endoplasmic Reticulum, J. Cell Sci., 1996, vol. 109, pp. 1415–1425.PubMedGoogle Scholar
  38. Lawrence, B.P. and Brown, W.J., Inhibition of Protein Synthesis Separates Autophagic Sequestration from the Delivery of Lysosomal Enzymes, J. Cell Sci., 1993, vol. 105, pp. 473–480.PubMedGoogle Scholar
  39. Le-Beux, Y., Hetennyi, G., and Phillips, M.J., Mitochondrial Myelin-Like Figures: a Non-specific Reactive Process of Mitochondrial Phospholipids Membranes to Several Stimuli, Z. Zellforchung., 1969, vol. 99, pp. 491–506.CrossRefGoogle Scholar
  40. Lust, W.D., Wheatson, A.B., Feussner, G., and Pasonneau, J., Metabolism in the Hamster Brain During Hibernation and Arousal, Brain Res., 1989, vol. 489, pp. 12–20.PubMedCrossRefGoogle Scholar
  41. Mijaljica, D., Prescott, M., and Devennish, R., Endoplasmic Reticulum and Golgi Complex: Contribution to and Turnover by Autophagy, Traffic, 2006, vol. 7, pp. 1590–1595.PubMedCrossRefGoogle Scholar
  42. Misteli, T., The Concept of Self-Organization in Cellular Architecture, J. Cell Biol., 2001, vol. 155, pp. 181–185.PubMedCrossRefGoogle Scholar
  43. Nakatogawa, H. and Ohsumu, Y., Starved Cells Eat Ribosomes, Nature Cell Biol, 2008, vol. 10, pp. 505–507.PubMedCrossRefGoogle Scholar
  44. Nunomura, A. and Miagishi, T., Ultrastructural Observations on Neuronal Lipofuscin (Age Pigment) and Dense Bodies Induced by a Proteinase Inhibitor, Leupeptin, in Rat Hippocampus, Acta Neuropathol., 1993, vol. 86, pp. 319–328.PubMedCrossRefGoogle Scholar
  45. Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kantvoto S., Kondo, S., Kannemoto, S., Murakami, T., Taniguchi, V., Tanii, M., Yoshingpa, K., Shiosaka, S., Hammarback, J.A., Urano, E., and Imaizumi, K., Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress, Mol. Cell. Biol., 2006, vol. 26, pp. 9220–9231.PubMedCrossRefGoogle Scholar
  46. Pannese, E., Developmental Changes of the Endoplasmic Reticulum and Ribosomes in Nerve Cells of the Spinal Ganglion of the Domestic Fowl, J. Com. Neurol., 1968, vol. 132, pp. 331–363.CrossRefGoogle Scholar
  47. Pathak, R.K., Luskey, K.L., and Anderson, R.G.W., Biogenesis of Crystalloidendoplasmic Reticulum in UT-1 Cells: Evidence that Newly Formed Endoplasmic Reticulum Emerges from the Nuclear Envelopment, J. Cell Biol., 1986, vol. 102, pp. 1258–1268.CrossRefGoogle Scholar
  48. Persico, A., Cervigni, R.I., Barretta, M, L., and Colanzi, A., Mitotic Inheritance of the Golgi Complex, FEBS Lett., 2009, vol. 583, pp. 3857–3862.PubMedCrossRefGoogle Scholar
  49. Popov, V.I. and Bocharova, L.S., Hibernation-Induced Structural Changes in Synaptic Contacts of Mossy Fibers and Hippocampal Pyramidal Neurons, Neuroscience, 1992, vol. 48, pp. 53–62.PubMedCrossRefGoogle Scholar
  50. Popov, V.I., Bocharova, L.S., and Bragin, A.G., Repeated Changes of Dendritic Morphology in the Hippocampus of Ground Squirrels in the Course of Hibernation, Neuroscience, 1992, vol. 48, pp. 45–51.PubMedCrossRefGoogle Scholar
  51. Powell, K.S. and Latterich, M., The Making and Breaking of the Endoplasmic Reticulum, Traffic, 2000, vol. 1, pp. 689–694.PubMedCrossRefGoogle Scholar
  52. Puhka, M., Vihinen, H., Joensuu, M., and Jokitalo, E., Endoplasmic Reticulum Remains Continuous and Undergoes Sheet-to-Tubule Transformation during Cell Division in Mammalian Cells, J. Cell Biol., 2007, vol. 179, pp. 895–909.PubMedCrossRefGoogle Scholar
  53. Ron, D., Translational Control in the Endoplasmic Reticulum Stress Response, J. Clin. Invest., 2002, vol. 110, pp. 1383–1388.PubMedGoogle Scholar
  54. Schmitz, G. and Muller, G., Structure and Function of Lamellar Bodies, Lipid-Protein Complexes Involved in Storage and Secretion of Cellular Lipids, J. Lipid Res., 1991, vol. 22, pp. 1539–1570.Google Scholar
  55. Semakova, K.N. and Kiseleva, E.V., Myelin-Like Structures as a Possible Source of the Smooth Endoplasmic Reticulum in the Early Oocytes of Amphibians, Tsitologiia, 2003, vol. 45, no. 8, pp. 746–757.PubMedGoogle Scholar
  56. Shibata, Y., Hu, J., Kozlov, M., and Rapoport, R.A., Mechanisms Shaping the Membranes of Cellular Organelles, Annual Rev. Cell Dev. Biol., 2009, vol. 25, pp. 329–354.CrossRefGoogle Scholar
  57. Shibata, Y., Voeltz, G.K., and Rapoport, T.A., Rough Sheets and Smooth Tubules, Cell, 2006, vol. 126, pp. 435–439.PubMedCrossRefGoogle Scholar
  58. Shnyrova, A., Frolov, V.A., and Zimmerberg, J., ER Biogenesis: Self-Assembly of Tubular Topology by Protein Hairpins, Curr. Biol., 2008, vol. 18, pp. R474–R476.PubMedCrossRefGoogle Scholar
  59. Shtark, M.B., Mozg zimnespyaschikh (The Brain of Hibernators), Novosibirsk: Nauka, 1970.Google Scholar
  60. Snapp, E., Endoplasmic Reticulum Biogenesis: Proliferation and Differentiation, in Biogenesis of Cellular Organelles, New York: Academic/Plenum, 2005, pp. 63–95.CrossRefGoogle Scholar
  61. Snigirevskaya, E.S, Sokolova, Yu.Ya., and Komissarchik, Ya.Yu., Structural and Functional Organization of the Golgi Apparatus, Tsitologiia, 2006, vol. 48, no. 1, pp. 57–80.Google Scholar
  62. Storey, K.B. and Storey, J.M., Tribute to P.L. Lutz; Putting Life on ‘Pause’—Molecular Regulation of Hypometabolism, J. Exp. Biol., 2007, vol. 210, pp. 700–1714.CrossRefGoogle Scholar
  63. Stoykova, A.S., Dudov, K.R., Dabeva, M.D., and Hadhjiolov, A.A., Different Rates of Synthesis and Turnover of Ribosomal RNA in Rat Brain, J. Neurochem., 1983, vol. 41, pp. 942–949.PubMedCrossRefGoogle Scholar
  64. Sulzer, D., Mosharov, E., Talloczy, Z., Zucca, F.A., Simon, J.D., and Zecca, L., Neuronal Pigmented Autophagic Vacuoles: Lipofuscin, Neuromelanin, and Ceroid as Macroautophagic Responses during Aging and Disease, J. Neurochem., 2008, vol. 106, pp. 24–36.PubMedCrossRefGoogle Scholar
  65. Tooze, S.A. and Schiavo, G., Liaisons Dangereueses: Autophagy, Neuronal Survival and Neurodegeneration, Curr. Opin. Neurobiol., 2008, vol. 18, pp. 504–515.PubMedCrossRefGoogle Scholar
  66. Ushiyama, Y., Shibata, M., Koike, M., Yoshimura, M., and Sasaki, M., Autophagy—Physiology and Pathophysiology, Histochem. Cell Biol., 2008, vol. 12, pp. 407–20.Google Scholar
  67. Van, Breukelen, F. and Martin, S., Molecular Adaptation in Mammalian Hibernators: Unique Adaptations or Generalized Responses?, J. Appl. Physiol., 2002, vol. 92, pp. 2640–2647.PubMedGoogle Scholar
  68. Voeltz, G.K. and Prinz, W.A., Sheets, Ribbons and Tubules—How Organelles Get Their Shape, Nature Rev. Mol. Cell Biol., 2007, vol. 8, pp. 258–264.CrossRefGoogle Scholar
  69. Von, der, Ohe, C.G., Garner, C.C., Darian-smith, D., and Heller, H.G., Synaptic Protein Dynamic in Hibernation, J. Neurosci., 2007, vol. 27, pp. 184–192.Google Scholar
  70. Yorimitsu, T., Kionsky, D, and J., Eating of Endoplasmic Reticulum: Quality Control by Autophagy, Trends Cell Biol., 2007, vol. 17, pp. 289–298.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. S. Bocharova
    • 1
  • R. Ya. Gordon
    • 2
  • V. V. Rogachevsky
    • 2
  • D. A. Ignat’ev
    • 2
  • S. S. Khutzian
    • 1
    • 2
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow regionRussia
  2. 2.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow regionRussia

Personalised recommendations