Cell and Tissue Biology

, Volume 3, Issue 2, pp 110–120 | Cite as

Spontaneous transformation and immortalization of mesenchymal stem cells in vitro

  • B. V. Popov
  • N. S. Petrov
  • V. M. Mikhailov
  • A. N. Tomilin
  • L. L. Alekseenko
  • T. M. Grinchuk
  • A. M. Zaichik


Mesenchymal stem cells (MSCs) possess plasticity and unlimited proliferative activity in vitro, which makes them an attractive object for studies focused on new resources for regenerative medicine. MSC application is effective for treating patients with degenerative and traumatic diseases of different tissues; however, the biological basis for the therapeutic efficacy of MSCs is still obscure. We found that the long-term culture of MSCs that expressed transgenic green fluorescence protein (GFP) led to an increase in their proliferative activity and reduced adhesion, loss of differentiation, and GFP production. At the first passages, MSCs showed karyotypic features of transformation, which were complicated at the later passages by the appearance of tumorigenic properties that were detected after transplantation into syngenic recipients. Tumor cells originated from MSCs explanted in vitro did not express GFP and could not be induced to differentiate. However, in contrast to the parent cells, they showed decreased clonogenic and proliferative activity. We assume that even the short-term cultivation of MSCs in vitro may result in their spontaneous transformation. We hypothesize that immortality and unlimited MSC expansion in vitro are consequences of their transformation rather than intrinsic stem-cell properties.

Key words

multipotent stromal cells cell culture karyotyping spontaneous transformation 



explanted tumor cell


mesenchymal stem cell


stem cell


growth medium


fetal calf serum


cyclin-dependent kinases


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, P.W., From Teratocarcinomas to Embryonic Stem Cells, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2002, vol. 357, pp. 405–417.PubMedCrossRefGoogle Scholar
  2. Campisi. J. and d’Adda di Fagagna, F., Cellular Senescence: When Bad Things Happen to Good Cells, Nat. Rev. Mol. Cell. Biol., 2007, vol. 8, pp. 729–740.PubMedCrossRefGoogle Scholar
  3. Committee on Standardized Genetic Nomenclature for Mice, Standard Karyotype of the Mouse, Mus musculus, Heredity, 1972, vol. 63, pp. 69–72.Google Scholar
  4. Cowell, J.K., A Photographic Representation of the G-Banded Structure of the Chromosomes in the Mouse Karyotype, Chromosoma, 1984, vol. 89, pp. 298–320.CrossRefGoogle Scholar
  5. De Coppi, P., Bartsch, G. Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S., and Atala, A., Isolation of Amniotic Stem Cell Lines With Potential for Therapy, Nat. Biotechnol., 2007, vol. 25, pp. 100–106.PubMedCrossRefGoogle Scholar
  6. Di Leonardo, A., Linke, S.P., Clarkin, K., and Wahl, G.M., DNA Damage Triggers a Prolonged p53-Dependent G1 Arrest and Long-Term Induction of Cip1 in Normal Human Fibroblasts, Genes Dev., 1994, vol. 8, pp. 2540–2551.PubMedCrossRefGoogle Scholar
  7. Friedenstein, A.J., Precursor Cells of Mechanocytes, Int. Rev. Cytol., 1976, vol. 47, pp. 327–359.PubMedCrossRefGoogle Scholar
  8. Grinchuk, T.M., Ivantsov, K.M., Alekseenko, L.L., et al., Culture Characteristics of Mesenchymal Stem Cells Expressing GFP, Tsitilogiia, 2008, vol. 50, pp. 1029–1034.Google Scholar
  9. Herzog, E.L., Chai, L., and Krause, D.S., Plasticity of Marrow-Derived Stem Cells, Blood, 2003, vol. 102, pp. 3483–3493.PubMedCrossRefGoogle Scholar
  10. Heyflick, L., The Limited in Vitro Lifetime of Human Diploid Cell Strains, Exp. Cell. Res., 1965, vol. 37, pp. 614–636.CrossRefGoogle Scholar
  11. Hsu, T.C., Billen, D., and Levan, A., Mammalian Chromosomes in Vitro. XV. Patterns of Transformation, J. Natl. Cancer Inst., 1961, vol. 27, pp. 515–541.PubMedGoogle Scholar
  12. Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A., and Verfaillie, C.M., Pluripotency of Mesenchymal Stem Cells Derived from Adult Marrow, Nature, 2002, vol. 418, pp. 41–49.PubMedCrossRefGoogle Scholar
  13. Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Klingelhutz, A.J., Both Rb/p16INK4a Inactivation and Telomerase Activity Are Required to Immortalize Human Epithelial Cells, Nature, 1998, vol. 396, pp. 84–88.PubMedCrossRefGoogle Scholar
  14. Kruglyakov, P.V., Sokolova, I.B., Amineva, Kh.K., Nekrasova, N.N., Viide, S.V., Cherednichenko, N.V., Zaritskii, A.Yu., Semernin, E.N., Kislyakova, T.V., and Polyntsev, D.G., The Influence of Mesenchymal Stem Cell Transplantation Time on Myocardial Reparation in Rat Experimental Heart Failure, Tsitologiia, 2005, vol. 47, no. 5, pp. 404–416.Google Scholar
  15. Lloyd, A.C., Limits to Lifespan, Nat. Cell Biol., 2002, vol. 4, pp. E25–E27.PubMedCrossRefGoogle Scholar
  16. McConnell, B. B., Starborg, M., Brookes, S., and Peters, G., Inhibitors of Cyclin-Dependent Kinases Induce Features of Replicative Senescence in Early Passage Human Diploid Fibroblasts, Curr. Biol., 1998, vol. 8, pp. 351–354.PubMedCrossRefGoogle Scholar
  17. McEachern, M.J. and Blackburn, E.H., Cap-Prevented Recombination between Terminal Telomeric Repeat Arrays (Telomere CPR) Maintains Telomeres in Kluyveromyces Lactis Lacking Telomerase, Genes Dev., 1996, vol. 10, pp. 1822–1834.PubMedCrossRefGoogle Scholar
  18. Meirelles, Lda.S. and Nardi, N.B., Murine Marrow-Derived Mesenchymal Stem Cell: Isolation, in Vitro Expansion, and Characterization, Br. J. Haematol., 2003, vol. 123, pp. 702–711.CrossRefGoogle Scholar
  19. Miura, M., Miura, Y., Padilla-Nash, H.M, Molinolo, A.A., Fu, B., Patel, V., Seo, B.M., Sonoyama, W., Zheng, J.J., Baker, C.C., Chen, W., Ried, T., and Shi, S., Accumulated Chromosomal Instability in Murine Bone Marrow Mesenchymal Stem Cells Leads to Malignant Transformation, Stem Cells, 2006, vol. 24, pp. 1095–1103.PubMedCrossRefGoogle Scholar
  20. Pal’tsev, M.A., Smirnov, V.N., Romanov, Yu.A., and Ivanov, A.A., Prospects of the Use of Stem Cells in Medicine, Vest. Ros. Akad. Nauk, 2006, vol. 76, no. 2, pp. 99–103.Google Scholar
  21. Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., and Campisi, J., Oxygen Sensitivity Severely Limits the Replicative Lifespan of Murine Fibroblasts, Nat. Cell Biol., 2003, vol. 5, pp. 741–747.PubMedCrossRefGoogle Scholar
  22. Payushina, O.D., Domaratskaya, E.I., Starostin, V.I., Mesenchymal Stem Cells: Sources, Phenotype, and Differentiation Potential, Izv. Ros. Akad. Nauk, Ser. Biol., 2006, vol. 1, pp. 6–25.Google Scholar
  23. Pereira, R.F., O’Hara, M.D., Laptev, A.V., Halford, K.W., Pollard, M.D. Class, R., Simon, D., Livezey, K., and Prockop, D.J., Marrow Stromal Cells as a Source of Progenitor Cells for Nonhematopoietic Tissues in Transgenic Mice with a Phenotype of Osteogenesis Imperfecta, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 1142–1147.PubMedCrossRefGoogle Scholar
  24. Phinney, D.G., Biochemical Heterogeneity of Mesenchymal Stem Cell Populations: Clues to Their Therapeutic Efficacy, Cell Cycle, 2007, vol. 6, pp. 2884–2889.PubMedGoogle Scholar
  25. Phinney, D.G., Hill, K., Michelson, C., DuTreil, M., Hughes, C., Humphries, S., Wilkinson, R., Baddoo, M., and Bayly, E., Biological Activities Encoded by the Murine Mesenchymal Stem Cell Transcriptome Provide a Basis for Their Developmental Potential and Broad Therapeutic Efficacy, Stem Cells, 2006, vol. 24, pp. 186–198.PubMedCrossRefGoogle Scholar
  26. Phinney, D.G., Kopen, G., Isaacson, R.L., and Prockop, D.J., Plastic Adherent Stromal Cells from the Bone Marrow of Commonly Used Strains of Inbred Mice: Variations in Yield, Growth, and Differentiation, J. Cell Biochem., 1999, vol. 72, pp. 570–585.PubMedCrossRefGoogle Scholar
  27. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R., Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, 1999, vol. 284, pp. 143–147.PubMedCrossRefGoogle Scholar
  28. Popov, B.V., Serikov. V.B., Petrov. N.S., Izusova. T.V., Gupta, N., and Matthay, A., Lung Epithelial Cells A549 Induce Epithelial Differentiation in Mouse Mesenchymal BM Stem Cells by Paracrine Mechanism, Tissue Eng., 2007, vol. 13, pp. 2441–2450.PubMedCrossRefGoogle Scholar
  29. Prockop, D.J., Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues, Science., 1997, vol. 276, pp. 71–74.PubMedCrossRefGoogle Scholar
  30. Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., and Weissman, I.L., A Role for Wnt Signalling in Self-Renewal of Haematopoietic Stem Cells, Nature, 2003, vol. 423, pp. 409–414.PubMedCrossRefGoogle Scholar
  31. Riggi, N., Cironi, L., Provero, P., Suva, M.L., Kaloulis, K., Garcia-Echeverria, C., Hoffmann, F., Trumpp, A., and Stamenkovic, I., Development of Ewing’s Sarcoma from Primary Bone Marrow-Derived Mesenchymal Progenitor Cells, Cancer Res., 2005, vol. 65, pp. 11 459–11 468.CrossRefGoogle Scholar
  32. Romanov, S.R., Kozakiewicz, B.K., Holst, C.R., Stampfer, M.R., Haupt, L.M., and Tlsty, T.D., Normal Human Mammary Epithelial Cells Spontaneously Escape Senescence and Acquire Genomic Changes, Nature, 2001, vol. 409, pp. 633–637.PubMedCrossRefGoogle Scholar
  33. Rubio, D., Garcia-Castro, J., Martin, M.C., de la Fuente, R., Cigudosa, J.C., Lloyd, A.C., and Bernad, A., Spontaneous Human Adult Stem Cell Transformation, Cancer Res., 2005, vol. 65, pp. 3035–3039.PubMedGoogle Scholar
  34. Seabright, M., A Rapid Banding Technique for Human Chromosomes, Lancet., 1971, vol. 2, pp. 971–972.PubMedCrossRefGoogle Scholar
  35. Serakinci, N. and Keith, W.N., Therapeutic Potential of Adult Stem Cells, Eur. J. Cancer., 2006, vol. 42, pp. 1243–1246.PubMedCrossRefGoogle Scholar
  36. Serakincim, N., Guldberg, P., Burns, J.S., Abdallah, B., Schrodder, H., Jensen, T., and Kassem, M., Adult Human Mesenchymal Stem Cell as a Target for Neoplastic Transformation, Oncogene, 2004, vol. 23, pp. 5095–5098.CrossRefGoogle Scholar
  37. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W., Oncogenic Ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a, Cell, 1997, vol. 88, pp. 593–602.PubMedCrossRefGoogle Scholar
  38. Shu, S.N., Wei, L., Wang, J.H., Zhan, Y.T., Chen, H.S., Wang, Y., Hepatic Differentiation Capability of Rat Bone Marrow-Derived Mesenchymal Stem Cells and Hematopoietic Stem Cells, World. J. Gastroenterol., 2004, vol. 10, pp. 2818–2822.PubMedGoogle Scholar
  39. Shumakov, V.I., Onishchenko, N.A., Krashennikov, M.E., Zaidenov, V.A., Potapov, I.V., Bashkina, L.V., and Bersenev, A.V., Differentiation of Stromal Stem Cells of the Bone Marrow to Cardiocyte-Like Cells in Different Mammalian Species, Bull. Exp. Biol. Med., 2003a, vol. 135, no. 4, pp. 461–465.CrossRefGoogle Scholar
  40. Shumakov, V.I., Onishchenko, N.A., Rasulov, M.F., Krashennikov, M.E., and Zaidenov, V.A., Mesenchymal Stem Cells of the Bone Marrow Stimulate Regeneration of Deep Burn Wounds More Efficiently than Embryonic Fibroblasts. Bull. Exp. Biol. Med., 2003b, vol. 136, no. 8, pp. 220–223.Google Scholar
  41. Street, C.N., Sipione, S., Helms, L., Binette, T., Rajotte, R.V., Bleackley, R.C., and Korbutt, G.S., Stem Cell-Based Approaches to Solving the Problem of Tissue Supply for Islet Transplantation in Type 1 Diabetes, Int. J. Biochem. Cell Biol., 2004, vol. 36, pp. 667–683.PubMedCrossRefGoogle Scholar
  42. Todaro, G.J. and Green, H., Quantitative Studies of the Growth of Mouse Embryo Cells in Culture and Their Development into Established Lines, J. Cell Biol., 1963, vol. 17, pp. 299–313.PubMedCrossRefGoogle Scholar
  43. Venable, M.E., Lee, J.Y., Smyth, M.J., Bielawska, A., and Obeid, L.M., Role of Ceramide in Cellular Senescence, J. Biol. Chem., 1995, vol. 270, pp. 30 701–30 708.Google Scholar
  44. Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W., and Ho, A.D., Comparative Characteristics of Mesenchymal Stem Cells from Human Bone Marrow, Adipose Tissue, and Umbilical Cord Blood, Exp. Hematol., 2005, vol. 33, pp. 1402–1416.PubMedCrossRefGoogle Scholar
  45. Woodbury, D., Schwarz, E.J., Prockop, D.J., and Black, I.B., Adult Rat and Human Bone Marrow Stromal Cells Differentiate into Neurons, J. Neurosci. Res., 2000, vol. 61, pp. 364–370.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • B. V. Popov
    • 1
  • N. S. Petrov
    • 1
  • V. M. Mikhailov
    • 1
  • A. N. Tomilin
    • 1
  • L. L. Alekseenko
    • 1
  • T. M. Grinchuk
    • 1
  • A. M. Zaichik
    • 2
  1. 1.Institute of Cytology Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Medical Academy of Postgraduate Studies RoszdravaSt. PetersburgRussia

Personalised recommendations