Cell and Tissue Biology

, Volume 2, Issue 5, pp 463–467 | Cite as

Role of human RAD51 recombinase in the cycle checkpoint and survival of a cell

  • T. A. Shtam
  • E. Yu. Varfolomeeva
  • E. V. Semenova
  • M. V. Filatov


The RAD 51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a significant role in both mitotic and meiotic homologous recombination. Here, we demonstrate that short-term silencing of the Rad51 gene by specific small interfering RNA (siRNA) that inhibits cell proliferation and reduces the viability of most cells. Cells with suppressed expression of Rad51 gene have altered cell cycles and accumulate in the S and G2 phases. Our findings show that the disruption of homologous recombination leads to cell death. However, some cells, e.g., MCF-7 cells, are insensitive to the suppression of Rad51 gene expression.

Key words

mologous recombination RAD51 cell cycle DNA repair 



small interfering RNA


small interfering RNA that suppress Rad51 gene expression


immunofluorescence assay


human skin fibroblasts


human embryonic lung fibroblasts


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biard, D., Untangling the Relationships between DNA Repair Pathways by Silencing More than 20 DNA Repair Genes in Human Stable Clones, Nucleic Acids Res., 2007, vol. 35, pp. 3535–3550.PubMedCrossRefGoogle Scholar
  2. Cox, M., Goodman, M., Kreuzer, K., Sherratt, D., Sandler, S., and Marians, K., The Importance of Repairing Stalled Replication Forks, Nature, 2000, vol. 2, pp. 37–41.Google Scholar
  3. Johnson, R. and Jasin, M., Double-strand-break-induced Homologous Recombination in Mammalian Cells, Biochem. Soc. Trans., 2001, vol. 29, pp. 196–201.PubMedCrossRefGoogle Scholar
  4. Kanaar, R., Hoeijmakers, J., and van Gent, D., Molecular Mechanisms of DNA Double Strand Break Repair, Trends Cell Biol., 1998, vol. 8, pp. 483–489.PubMedCrossRefGoogle Scholar
  5. Liang, F., Han, M., Romanienko, P., and Jasin, M., Homology-directed Repair Is a Major Double-strand Break Repair Pathway in Mammalian Cells, Proc. Natl. Acad. Sci. USA., 1998, vol. 95, pp. 5172–5177.PubMedCrossRefGoogle Scholar
  6. Lim, D. and Hasty, P., A Mutation in Mouse RAD51 Results in an Early Embryonic Lethal that Is Suppressed by a Mutation in p53, Mol. Cell. Biol., 1996, vol. 16, pp. 7133–7143.PubMedGoogle Scholar
  7. McGlynn, P. and Lloyd, R., Recombinational Repair and Restart of Damaged Replication Forks, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 859–870.PubMedCrossRefGoogle Scholar
  8. Mladenov E., Tsaneva, I., and Anachkova, B., Cell Cycledependent Association of Rad51 with the Nuclear Matrix DNA, Cell Biol., 2007, vol. 26, pp. 36–43.Google Scholar
  9. Pierce, A., Stark, J., Araujo, F., Moynahan, M., Berwick, M., and Jasin, M., Double-strand Breaks and Tumorigenesis, Trends Cell Biol., 2001, vol. 11, pp. 52–59.Google Scholar
  10. Pittman, D. and Schimenti, J., Midgestation Lethality in Mice Deficient for the RecA-related Gene, Rad51d/Rad51l3, Genesis, 2000, vol. 26, pp. 167–173.PubMedCrossRefGoogle Scholar
  11. Raderschall, E., Stout, K., Freier, S., Suckow, V., Schweiger, S., and Haaf, T., Elevated Levels of Rad51 Recombination Protein in Tumor Cells, Cancer Res., 2002, vol. 62, pp. 219–225.PubMedGoogle Scholar
  12. Schwartz, M., Zlotorynski, E., Goldberg, M., Ozeri, E., Rahat, A., le Sage, C., Chen, B., Chen, D., Agami, R., and Kerem, B., Homologous Recombination and Nonhomologous End-joining Repair Pathways Regulate Fragile Site Stability, Genes Dev., 2005, vol. 19, pp. 2715–2726.PubMedCrossRefGoogle Scholar
  13. Slupianek, A., Schmutte, C., Tombline, G., Nieborowska-Skorska, M., Hoser, G., Nowicki, M., Pierce, A., Fishel, R., and Skorski, BCR/ABL Regulates Mammalian RecA Homologs, Resulting in Drug Resistance, Mol. Cell, 2001, vol. 8, pp. 795–806.PubMedCrossRefGoogle Scholar
  14. Takata, M., Sasaki, M., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., Yamaguchi-Iwai, Y., Shinohara, A., and Takeda, S., Homologous Recombination and Non-homologous End-joining Pathways of DNA Double-strand Break Repair Have Overlapping Roles in the Maintenance of Chromosomal Integrity in Vertebrate Cells, EMBO J., 1998, vol. 17, pp. 5497–5508.PubMedCrossRefGoogle Scholar
  15. Takata, M., Sasaki, M., Tachiiri, S., Fukushima, T., Sonoda, E., Schild, D., Thompson, L., and Takeda, S., Chromosome Instability and Defective Recombinational Repair in Knockout Mutants of the Five Rad51 Paralogs, Mol. Cell Biol., 2001, vol. 21, pp. 2858–2866.PubMedCrossRefGoogle Scholar
  16. Tashiro, S., Kotomura, N., Shinohara, A., Tanaka, K., Ueda, K., and Kamada, N., S-phase Specific Formation of the Human Rad51 Protein Nuclear Foci in Lymphocytes, Oncogene, 1996, vol. 12, pp. 2165–2170.PubMedGoogle Scholar
  17. Thompson, L. and Schild, D., Recombinational DNA Repair and Human Disease, Mutat. Res., 2002, vol. 509, pp. 49–78.PubMedGoogle Scholar
  18. Tsuzuki, T., Fujii, Y., Sakumi, K., Tominaga, Y., Nakao, K., Sekiguchi, M., Matsushiro, A., Yoshimura Y., and Morita, T, Targeted Disruption of the Rad51 Gene Leads to Lethality in Embryonic Mice, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 6236–6240.PubMedCrossRefGoogle Scholar
  19. Weaver, D., What to Do at an End: DNA Double-strand Break Repair, Trends Genet., 1995, vol. 11, pp. 388–392.PubMedCrossRefGoogle Scholar
  20. Xia, S., Shamans, M., and Shmookler, Reis, R., Elevated Recombination in Immortal Cells Is Mediated by HsRad51 Recombinase, Mol. Cell. Biol., 1997, vol. 17, pp. 7151–7158.PubMedGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • T. A. Shtam
    • 1
  • E. Yu. Varfolomeeva
    • 1
  • E. V. Semenova
    • 1
  • M. V. Filatov
    • 1
  1. 1.Petersburg Nuclear Physics Institute of Russian Academy of SciencesGatchina, Leningrad oblastRussia

Personalised recommendations