Advertisement

Cell and Tissue Biology

, 2:45 | Cite as

Microtubule system in endothelial barrier dysfunction: Disassembly of peripheral microtubules and microtubule reorganization in internal cytoplasm

  • K. M. Smurova
  • A. A. Birukova
  • A. D. Verin
  • I. B. Alieva
Article

Abstract

Endothelial cell barrier dysfunction is associated with dramatic cytoskeletal reorganization, the activation of actomyosin contraction, and, finally, gap formation. Although the role of microtubules in the regulation of endothelial cell barrier function is not fully understood, a number of observations allow for the assumption that the reaction of the microtubule is an extremely important part in the development of endothelial dysfunction. These observations have forced us to examine the role of microtubule reorganization in the regulation of the endothelial cell barrier function. In quiescent endothelial cells, microtubule density is the highest in the centrosome region; however, microtubules are also present near the cell margin. The analysis of microtubule distribution after specific antibody staining using the method of measurement of their fluorescence intensity showed that, in control endothelial cells, the reduction of fluorescence intensity from the cell center to its periphery is described by the equation of exponential regression. The edemagenic agent, thrombin (25 nM), caused the rapid increase of endothelial cell barrier permeability accompanied by a fast decrease in quantity of the peripheral microtubules and reorganization of the microtubule system in the internal cytoplasm of endothelial cells (the decrease of fluorescence intensity is described by the equation of linear regress within as little as 5 min after the beginning of treatment). Both effects are reversible; within 60 min after the beginning of treatment, the microtubule network does not differ from the standard one. Thus, the microtubule system is capable of adapting to the influence of a natural regulator, thrombin. The reorganization of microtubules develops more quickly than the reorganization of the actin filaments system responsible for the subsequent changes of the cell shape during barrier dysfunction. Apparently, the microtubules are the first part in the circuit of the reactions leading to the pulmonary endothelial cell barrier compromise.

Key words

pulmonary endothelium endothelial barrier function endothelial barrier dysfunction thrombin actin filaments microtubules 

References

  1. Bershadsky, A.D., Ballestrem, C., Carramusa, L., Zilberman, Y., Gilquin, B., Khochbin, S., Alexandrova, A.Y, Verkhovsky, A.B., Shemesh, T., and Kozlov, M.M., Assembly and Mechanosensory Function of Focal Adhesions: Experiments and Models, Eur. J. Cell Biol., 2006, vol. 85, pp. 165–173.PubMedCrossRefGoogle Scholar
  2. Birukova, A., Birukov, K., Smurova, K., Kaibuchi, K., Alieva, I., Garcia, J.G., and Verin A., Novel Role of Microtubules in Thrombin-induced Endothelial Barrier Dysfunction, FASEB J., 2004a, vol.18, pp.1879–1890.PubMedCrossRefGoogle Scholar
  3. Birukova, A.A., Smurova, K.M., Birukov, K.G., Kaibuchi, K., Garcia, J.G., and Verin A.D., Role of Rho GTPases in Thrombin-induced Lung Vascular Endothelial Cells Barrier Dysfunction, Microvasc. Res., 2004b, vol. 67, pp. 64–77.PubMedCrossRefGoogle Scholar
  4. Birukova, A., Smurova, K., Birukov, K., Usatyuk, P., Liu, F., Kaibuchi, K., Ricks-Cord, A., Natarajan, V., Alieva, I., Garcia, J.G., and Verin, A., Microtubule Disassembly Induces Cytoskeletal Remodeling and Vascular Barrier Dysfunction: Role of Rho-dependent Mechanisms, J. Cell Physiol., 2004c, vol. 201, pp. 55–70.PubMedCrossRefGoogle Scholar
  5. Bogatcheva, N.V., Garcia, J.G.N., and Verin, A.D., Molecular Mechanisms of Thrombin-induced Endothelial Cell Permeability, Biochemistry (Mosc.), 2002, vol. 67, pp. 75–84.CrossRefGoogle Scholar
  6. Cattan, C.E. and Oberg, K.C., Vinorelbine Tartrate-induced Pulmonary Edema Confirmed on Rechallenge, Pharmacotherapy, 1999, vol.19, pp. 992–994.PubMedCrossRefGoogle Scholar
  7. Cook, T. A., Nagasaki, T., and Gundersen, G. G., Rho Guanosine Triphosphatase Mediates the Selective Stabilization of Microtubules Induced by Lysophosphatidic acid, J. Cell Biol., 1998, vol. 141, pp. 175–185.PubMedCrossRefGoogle Scholar
  8. Danowski, B.A., Fibroblast Contractility and Actin Organization are Stimulated by Microtubule Inhibitors, J. Cell Sci., 1989, vol. 93, pp. 255–266.PubMedGoogle Scholar
  9. Daub, H., Gevaert, K., Vandekerckhove, J., Sobel, A., and Hall, A., Rac/Cdc42 and p65PAK Regulate the Microtubule-destabilizing Protein Stathmin through Phosphorylation at Serine 16, J. Biol. Chem., 2001, vol. 276, pp. 1677–1680.PubMedCrossRefGoogle Scholar
  10. Dudek, S.M. and Garcia, J.G., Cyloskeletal Regulation of Pulmonary Vascular Permeability, J. Appl. Physiol., 2001, vol. 91, pp. 1487–1500.PubMedGoogle Scholar
  11. Elbaum, M., Chausovsky, A., Levy, E.T., Shtutman, M., and Bershadsky, A.D., Microtubule Involvement in Regulating Cell Contractility and Adhesion-dependent Signaling: A Possible Mechanism for Polarization of Cell Motility, Biochem. Soc. Symp., 1999, vol. 65, pp. 147–172.PubMedGoogle Scholar
  12. Fuchs, E. and Karakesisoglou, I., Bridging Cytoskeletal Intersections, Genes Dev., 2001, vol. 15, pp. 1–14.PubMedCrossRefGoogle Scholar
  13. Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., and Kaibuchi K., Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170, Cell, 2002, vol. 109, pp. 873–885.PubMedCrossRefGoogle Scholar
  14. Garcia, J.G., Davis, H.W., and Patterson, C.E, Regulation of Endothelial Cell Gap Formation and Barrier Dysfunction: Role of Myosin Light Chain Phosphorylation, J. Cell. Physiol., 1995, vol. 163, pp. 510–522.PubMedCrossRefGoogle Scholar
  15. Garcia, J.G., Verin, A.D., and Schaphorst, K.L., Regulation of Thrombin-mediated Endothelial Cell Contraction and Permeability, Semin. Thromb. Hemostasis, 1996, vol. 22, pp. 309–315.CrossRefGoogle Scholar
  16. Groeneveld, A.B., Vascular Pharmacology of Acute Lung Injury and Acute Respiratory Distress Syndrome, Vascul. Pharmacol., 2002, vol. 39, pp. 247–256.PubMedCrossRefGoogle Scholar
  17. Ingber, D.E., Mechanical Signaling and the Cellular Response to Extracellular Matrix in Angiogenesis and Cardiovascular Physiology, Circ. Res., 2002, vol. 91, pp. 877–887.PubMedCrossRefGoogle Scholar
  18. Ishizaki, T., Morishima, Y., Okamoto, M., Furuyashiki, T., Kato, T., and Narumiya S., Coordination of Microtubules and the Actin Cytoskeleton by the Rho Effector mDia1, Nat. Cell Biol., 2001, vol. 3, pp. 8–14.PubMedCrossRefGoogle Scholar
  19. Jaffe, A.B. and Hall, A., Rho GTPases: Biochemistry and Biology, Annu. Rev. Cell Dev. Biol., 2005, vol. 21, pp. 247–269.PubMedCrossRefGoogle Scholar
  20. Kaverina, I., Krylyshkina, O., and Small, J.V., Microtubule Targeting of Substrate Contacts Promotes Their Relaxation and Dissociation, J. Cell Biol., 1999, vol.146, pp. 1033–1044.PubMedCrossRefGoogle Scholar
  21. Kaverina, I., Krylyshkina, O., and Small, J.V., Regulation of Substrate Adhesion Dynamics during Cell Motility, Int. J. Biochem. Cell Biol., 2002, vol. 34, pp. 746–761.PubMedCrossRefGoogle Scholar
  22. Lum, H. and Malik, A.B., Mechanisms of Increased Endothelial Permeability, Can. J. Physiol. Phannacol., 1996, vol. 74, pp. 787–800.CrossRefGoogle Scholar
  23. Palazzo, A.F., Cook, T.A., Alberts, A.S., and Gundersen, G.G., mDia Mediates Rho-regulated Formation and Orientation of Stable Microtubules, Nat. Cell Biol., 2001, vol. 3, pp. 723–729.PubMedCrossRefGoogle Scholar
  24. Ridley, A.J., Rho Family Proteins: Coordinating Cell Responses, Trends Cell Biol., 2001, vol. 11, pp. 471–477.PubMedCrossRefGoogle Scholar
  25. Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M., and Waterman-Storer, C.M., Conserved Microtubule-actin Interactions in Cell Movement and Morphogenesis, Nat. Cell Biol., 2003, vol. 5, pp. 599–609.PubMedCrossRefGoogle Scholar
  26. Sahai, E. and Marshall, C.J., ROCK and Dia Have Opposing Effects on Adherens Junctions Downstream of Rho, Nat. Cell Biol., 2002, vol. 4, pp. 408–415.PubMedCrossRefGoogle Scholar
  27. Small, J.V. and Kaverina, I., Microtubules Meet Substrate Adhesions to Arrange Cell Polarity, Curr. Opin. Cell Biol., 2003, vol.15, pp. 40–47.PubMedCrossRefGoogle Scholar
  28. Small, J.V., Geiger, B., Kaverina, I., and Bershadsky, A.D., How Do Microtubules Guide Migrating Cells?, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 957–964.PubMedCrossRefGoogle Scholar
  29. Small, J.V., Kaverina, I., Krylyshkina, O., and Rottner, K., Cytoskeleton Cross-talk during Cell Motility, FEBS Lett., 1999, vol. 452, pp. 96–99.PubMedCrossRefGoogle Scholar
  30. Smurova, K.M., Alieva, I.B., and Vorobjiev, I.A., Dynamics of Microtubule Recovery after Their Nocodozole Destruction in Cultured Vero Cells, Biol. Membr., 2002, vol. 19, pp. 472–482.Google Scholar
  31. Smurova, K.M., Birukova, A.A., Garcia, G. Vorobjiev, I.A., Alieva, I.B., and Verin, A.D. Reorganization of Microtubules in Epithelium Lung Cells Treated with Thrombin, Tsitologiia, 2004, vol. 46, pp. 695–703.PubMedGoogle Scholar
  32. Smurova, K.M., Alieva, I.B., and Vorobjiev, I.A., Free and Centrosome-binded Microtubules: Quantitative Analysis and Modelling of Two-component System, Tsitologiia, 2007, vol. 49, pp. 270–279.PubMedGoogle Scholar
  33. van Nieuw Amerongen, G.P., van Delft, S., Vermeer, M.A., Collard, J.G., and van Hinsbergh, V.W., Activation of RhoA by Thrombin in Endothelial Hyperpermeability: Role of Rho Kinase and Protein Tyrosine Kinases, Circ. Res., 2000, vol. 87, pp. 335–340.PubMedGoogle Scholar
  34. Verin, A.D., Birukova, A., Wang, P., Liu, F., Becker, P., Birukov, K., and Garcia, J.G., Microtubule Disassembly Increases Endothelial Cell Barrier Dysfunction: Role of MLC Phosphorylation, Am. J. Physiol., 2001, vol. 281, pp. 565–574.Google Scholar
  35. Villalonga, P. and Ridley, A.J., Rho GTPases and Cell Cycle Control, Growth Factors, 2006, vol. 24, pp. 159–164.PubMedCrossRefGoogle Scholar
  36. Wallar, B.J. and Alberts, A.S., The Formins: Active Scaffolds that Remodel the Cytoskeleton, Trends Cell Biol., 2003, vol. 13, pp. 435–446.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • K. M. Smurova
    • 1
  • A. A. Birukova
    • 2
  • A. D. Verin
    • 3
  • I. B. Alieva
    • 1
  1. 1.A.N. Belozersky InstituteMoscow State UniversityMoscowRussia
  2. 2.Department of Medicine, Section of Pulmonary and Critical Care MedicineUniversity of ChicagoChicagoUSA
  3. 3.Vascular Biology CenterMedical College of GeorgiaAugustaUSA

Personalised recommendations