Advertisement

Cell and Tissue Biology

, Volume 1, Issue 4, pp 357–363 | Cite as

Electromagnetic irradiation of the terahertz diapason at nitric oxide frequencies for correction and prevention of disturbances of platelet functional activity in white rats during long-term stress

  • V. F. Kirichuk
  • A. N. Ivanov
  • O. N. Antipova
  • A. P. Krenitskii
  • A. V. Maiborodin
  • V. D. Tupikin
  • O. V. Betskii
Article

Abstract

The effect of electromagnetic waves of the terahertz diapason at the frequencies of the molecular spectrum of irradiation and absorption of nitric oxide on the functional activity of platelets was studied in white rats submitted to a long-term stress. The course of action of terahertz frequency (THF) during the period of action of the stress was shown to prevent and restore disturbances of platelet aggregatory activity. Stress on animals submitted to a preventive course of THF action did not produce disturbances of the platelet functional activity characteristic of the stress reaction.

Key words

aggregation platelets waves of terahertz diapason nitric oxide 

Accepted abbreviations

MSIA

molecular spectrum of irradiation and absorption

NHF

terahertz frequency

EMI

electromagnetic irradiation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, S., Nitric Oxide in the Nervous System, Vincent, S., Ed., N.Y.: Academic, 1995, pp. 151–162.Google Scholar
  2. 2.
    Antonov, A.M., Belikina, N.V., and Georgieva, S.A., Adaptational Organism Reactions and System of Blood Coagulation, X siezd Vsesoyuznogo fiziologicheskogo obshchestva im. I.P. Pavlova (X Congress of I.P. Pavlov USSR Physiological Society), 1964, vol. 1, p. 47.Google Scholar
  3. 3.
    Armstead, W.M., Nitric Oxide Contributes to Opioid Release from Glia during Hypoxia, Brain Res., 1998, vol. 813, pp. 398–401.PubMedCrossRefGoogle Scholar
  4. 4.
    Basharinov, A.E., Tuchkov, L.G., Polyakov, V.M., and Alanov, N.I., Izmerenie radioteplovykh i plazmennykh izluchenii v SVCh-diapazone (Measurement of Radiothermal and PlasmaIrradiations in the SHCh Diapason), Moscow: Sovetskoye Radio, 1968.Google Scholar
  5. 5.
    Betskii, O.V., Devyatkov, N.D., and Kislov, V.V., Millimeter Waves of Low Intensity in Medicine and Biology, Biomed. Electronics, 1998, vol. 4, pp. 13–29.Google Scholar
  6. 6.
    Betskii, O.V., Krenirskii, A.P., Maiborodin, A.V., and Tupikin, V.D., Biophysical Effects of Waves of the Terahertz Diapason and Perspectives of Development of New Directions in Biomedical Technology: “Terahertz Therapy” and Terahertz Diagnostics,” Biomed. Tekhnol. Radioelektr., 2003, vol. 12, pp. 3–6.Google Scholar
  7. 7.
    Byshevskii, A.Sh, Galyan, S.L., Dement’eva, I.A., Nelaeva, A.A., and Solov’ev, V.T., Trombotsity (Platelets), Tyumen, 1996.Google Scholar
  8. 8.
    Devyatkov, N.G., Golland, N.B., and Betskii, O.V., MM-volny i ikh rol v protsessakh zhiznedeyatelnosti (The MM-waves and Their Role in Processes of Life Activity), Moscow: Radio i Svyaz, 1991.Google Scholar
  9. 9.
    Gabbasov, V.A., Popov, E.G., Gavrilov, I.Yu., Pozin, E.Ya., and Markosyan, R.A., A New Highly Sensitive Method of Analysis of Platelet Aggregation, Lab. Delo, 1989, vol. 10, pp. 15–18.PubMedGoogle Scholar
  10. 10.
    Gerzer, R., Radany, E.V., and Garbers, D.L., The Separation of the Heme and Apoheme Forms of Soluble Guanylate Cyclase, Biochem. Biophys. Res. Commun., 1982, vol. 108, pp. 678–686.PubMedCrossRefGoogle Scholar
  11. 11.
    Golovacheva, T.V., Petrova, V.D., and Parshina, S.S. Electromagnetic Irradiation of Millimeter Diapason as Method of Pathogenetic Therapy of Diseases of Cardiovascular System, Millimetr. Voln. Biol. Med., 2000, vol. 1, pp. 18–25.Google Scholar
  12. 12.
    Gorren, A.K.F., and Maier, B., Universal and Complex Enzymology of Nitric Oxide Synthase, Biokhimiya, 1998, vol. 63, no. 7, pp. 870–880.Google Scholar
  13. 13.
    Grinevich, V.V., Poskrebysheva, E.A., and Savelov, N.A., Hierarchial Interrelations between Organs of the Hypothalamo-pituitary-adrenal System in Inflammation, Usp. Fiziol. Nauk, 1999, vol. 30, no. 4, pp. 50–66.PubMedGoogle Scholar
  14. 14.
    Halcox, J.P.J., Nour, K.R.A., Zalos, G, and Quyumi, A.A., Coronary Vasodilatation and Improvement in Endothelial Dysfunction with Endothelin ETA Receptor Blockade, Circ. Res., 2001, vol. 89, pp. 969–976.PubMedGoogle Scholar
  15. 15.
    Ignarro, L.G., and Murad, F., Nitric Oxide: Biochemistry, Molecular Biology and Therapeutic Implication, Adv. Pharmacol., 1995, vol. 34, pp. 1–516.CrossRefGoogle Scholar
  16. 16.
    Ignarro, L.G., and Wood, K.S., Activation of Purified Soluble Guanylate Cyclase by Arachidonic Acid Requires Absence of Enzyme-bound Heme, Biochim. Biophys. Acta, 1987, vol. 928, pp. 160–170.PubMedCrossRefGoogle Scholar
  17. 17.
    Kirichuk, V.F., Antipova, O.N., Ivanov, A.N., Krenitskii, A.P., Maiborodin, A.V., Tupikin, V.D., and Betskii, O.V., Recovery of Blood Rheologic Properties by KWH Irradiation at the Frequency of Nitric Oxide Molecular Specter (in vivo), Ross. Fiziol. Zh. im. I.M. Sechenova, 2004a, vol. 90, no. 9, pp. 1121–1128.PubMedGoogle Scholar
  18. 18.
    Kirichuk, V.F., Volin, M.V., Krenitskii, A.P., Maiborodin, A.V., and Tupikin, V.D., Effect of Electromagnetic KWH Oscillations at Frequencies of Molecular Spectra of Nitric Oxide Irradiation and Absorption on Platelet Functional Activity, Tsitologiya, 2001, vol. 43, no. 8, pp. 759–763.Google Scholar
  19. 19.
    Kirichuk, V.F., Volin, M.V., Krenitskii, A.P., Maiborodin, A.V., and Tupikin, V.D. Trombotsity v reaktsiyakh sistemy gomeostaza na KVCh-vozdeistvue (Platelets in Reactions of the Homeostasis System to KWH Action), Saratov: Sar. GMU, 2002.Google Scholar
  20. 20.
    Kirichuk, V.F., Golovacheva, T.V., and Chizh, A.G., KVCh-terapiya (KWH Therapy), Saratov: Sar. GMU, 1999.Google Scholar
  21. 21.
    Kirichuk, V.F, Ivanov, A.N., Antipova, O.N., Krenitskii, A.P., Maiborodin, A.V., Tupikin, V.D., and Betskii, O.V., Recovery of Platelet Function in White Rats in the State of Stress under Effect of KWH Irradiation at Nitric Oxide Frequency, Mater. XIII Ross. Simpos. “Millimetrovye volny v biologii i meditsiny” s mezhdunar. Uchastiem (Proc. XIII Ross. Symp. with Intern. Particip. “Millimeter Waves in Biology and Medicine”) Moscow, 2003, pp. 91–93.Google Scholar
  22. 22.
    Kirichuk, V.F., Ivanov, A.N., Antipova, O.N., Krenitskii, A.P., Maiborodin, A.V., Tupikin, V.D., and Betskii, O.V., Effect of Electromagnetic Irradiation of Terahertz Diapason at Frequencies of Nitric Oxide Molecular Specter on White Rat Platelets in Immobilization Stress, Biomed. Technol. Radioelectron., 2004b, vol. 11, pp. 4–11.Google Scholar
  23. 23.
    Kirichuk, V.F., Ivanov, A.N., Antipova, O.N., Krenitskii, A.P., Maiborodin, A.V., Tupikin, V.D., and Betskii, O.V., Effect of KWH Irradiation on Functions of Platelets and Erythrocytes of White Rats in the State of Stress, Tsitologiya, 2005, vol. 47, no. 1, pp. 64–70.Google Scholar
  24. 24.
    Kirichuk, V.F., Pomishnikova, O.I., Antipova, O.N., Krenitskii, A.P., Maiborodin, A.V., Tupikin, V.D., and Betskii, O.V., Effect of Electromagnetic Irradiation on Terahertz Diapason at Frequencies of Molecular Specter of Nitric Oxide Irradiation and Absorption on Recovery of Qualitative and Quantitative Blood Erythrocyte Composition (in vivo), Biomed. Technol. Radioelectron., 2004c, vol. 11, pp. 21–27.Google Scholar
  25. 25.
    Kirichuk, V.F., Tsymbal, A.A., Antipova, O.N., Krenitskii, A.P., Maiborodin, A.V., Nupikin, V.D., and Betskii, O.V., Hemocoagulation and Electromagnetic Irradiation of Terahertz Diapason of Nitric Oxide Molecular Specter, Biomed. Technol. Radioelectron., 2004d, vol. 11, pp. 28–34.Google Scholar
  26. 26.
    Kostoglou-Athanassiou, I., Costa, A., Navarra, P., Nappi, G., Forsling, M.L., and Grossman, A.B., Endotoxin Stimulates an Endogenous Pathway Regulating Corticotrophin-releasing Hormone and Vasopressin Release Involving the Generation of Nitric Oxide and Carbon Monoxide, J. Neuroimmunol., 1998, vol. 86, pp. 104–109.PubMedCrossRefGoogle Scholar
  27. 27.
    Malyshev, I.Yu., and Manukhina, E.B., Stress, Adaptation, and Nitric Oxide, Biokhimiya, 1998, vol. 63, no. 7, pp. 992–1006.Google Scholar
  28. 28.
    Manukhina, E.B., and Malyshev, I.Yu., Stress-limiting System of Nitric Oxide, Ross. Fiziol. Zh. im. I.M. Sechenova, 2000, vol. 86, no. 10, pp. 1283–1292.PubMedGoogle Scholar
  29. 29.
    Manukhina, E.B., Mashina, S.Yu., Vlasova, M.A., Smirin, B.V., Podkidyshev, D.A., and Malyshev, I.Yu., Role of Free and Stored Nitric Oxide in Adaptation to Hypoxia of the Cardiobascular System, Reg. Krovoobr. Mikrotsirk., 2004, vol. 3, pp. 4–11.Google Scholar
  30. 30.
    Mashina, S.Yu., Smirin, B.V., Malyshev, I.Yu., Lyamina, N.P., Senchikhin, V.N., Podkidyshev, D.A., and Manukhina, E.B., Correction of NO-dependent Cardiovascular Disturbances with Aid of Adaptation to Hypoxia, Ross. Fiziol. Zh. im. I.M. Sechenova, 2001, vol. 87, no. 1, pp. 110–117.PubMedGoogle Scholar
  31. 31.
    Matsuoka, I., and Suzuki, T., Mepacrine-induced Elevation of Cyclic GMP Levels and Acceleration of Reversal of ADP-induced Aggregation in Washed Rabbit Platelets, J. Cyclic Nucleotide Protein Phosphor. Res., 1983, vol. 9, pp. 5341–5353.Google Scholar
  32. 32.
    Meerson, F.Z., Adaptatsionnaya meditsina: mekhanizmy i zashchitnye effecty (Adaptaional Medicine: Mechanisms and Protective Effects), Moscow: Hypoxia Medical LTD, 1993.Google Scholar
  33. 33.
    Mellion, B.Th., Ignarro, L.G., Ohlstein, E.U., Pontecorvo, E.G., Hyman, A.L., and Kadowitz, P.G., Evidence for the Inhibitory Role of Guanosine 3′,5′-Monophosphate in ADP-induced Human Platelet Aggregation in the Presence of Nitric Oxide and Related Vasodilators, Blood, 1981, vol. 57, pp. 946–949.PubMedGoogle Scholar
  34. 34.
    Naesh, O., Haedersdal, C., and Hindberg, J. Platelet Activation in Mental Stress, Clin. Physiol., 1993, vol. 13, pp. 299–307.PubMedGoogle Scholar
  35. 35.
    Nevzorova V.A., Zuga, M.V., and Geltser, B.I., Role of Nitric Oxide in Regulation of Pulmonary Functions, Terap. Arkh., 1997, vol. 69, no. 3, pp. 68–73.Google Scholar
  36. 36.
    Palmer, R.M., Ashton, D.S., and Moncada, S., Vascular Endothelial Cells Synthesize Nitric Oxide from L-Arginine, Nature, 1988, vol. 333, pp. 6174–6646.CrossRefGoogle Scholar
  37. 37.
    Panin, L.E., Biokhimicheskie mekhanizmy stressa (Biochemical Mechanisms of Stress), Novosibirsk: Nauka, 1983.Google Scholar
  38. 38.
    Paul, V., and Jayakumar, A.R., A Role of Nitric Oxide as an Inhibitor of Gamma-amonobutyric Acid Transaminase in Rat Brain, Brain Res. Bull., 2000, vol. 51, pp. 43–46.PubMedCrossRefGoogle Scholar
  39. 39.
    Pshennikova, M.G., Smirin, B.V., Bondarenko, O.N., Malyshev, I.Yu., and Manukhina, E.B., Storage of Nitric Oxide in Rats of Various Genetic Lines and Its Role in Antistress Effect of Adaptation to Hypoxia, Ross. Fiziol. Zh. im. I.M. Sechenova, 2000, vol. 86, no. 2, pp. 174–181.PubMedGoogle Scholar
  40. 40.
    Reutov, V.P., Biochemical Predetermination of NO-synthase and Nitroreductase Components of the Nitric Oxide Cycle, Biokhimiya, 1999, vol. 64, no. 5, pp. 634–651.Google Scholar
  41. 41.
    Selye, H., Essays of Adaptational Syndrome, Moscow: Meditsina, 1960.Google Scholar
  42. 42.
    Severina, I.S., Guanylate Cyclase Soluble Form in Molecular Mechanism of Nitric Oxide Physiological Effects and in Regulation of the Platelet Aggregation Process, Byull. Exp. Biol. Med., 1995, vol. 3, pp. 230–235.Google Scholar
  43. 43.
    Severina, I.S., Soluble Guanylate Cyclase in Molecular Mechanism of Nitric Oxide Physiological Effects, Biokhimiya, 1998, vol. 63, no. 7, pp. 939–997.Google Scholar
  44. 44.
    Shitikova, A.S., Trombotsitarnyi gemostaz (Thrombocytic Hemostasis), St. Petersburg: SPbGMU, 2000.Google Scholar
  45. 45.
    Steer, M.L., and Salzman, E.W., Cyclic Nucleotides in Hemostasis and Thrombosis, Adv. Cyclic Nucleotides Res., 1980, vol. 12, pp. 71–92.Google Scholar
  46. 46.
    Takeda, H., Stress-induced Gastric Mucosal Lesion and Platelet Aggregation in Rats, J. Clin. Gastroenterol., 1992, vol. 14, pp. 145–148.CrossRefGoogle Scholar
  47. 47.
    Vane, J.R., Anggard, E.E., and Botting, R.M. Regulatory Functions of the Vascular Endothelium, N. Engl. J. Med., 1990, vol. 323, pp. 27–36.PubMedCrossRefGoogle Scholar
  48. 48.
    Vanin, A.F., Dinitrosyl Complexes of Iron and S-Nitrosothiols—Two Possible Forms of Stabilization and Transport of Nitric Oxide in Biosystems, Biokhimiya, 1998, vol. 63, no. 7, pp. 924–938.Google Scholar
  49. 49.
    Volin, M.S., Davidson, K.A., Kaminska, P.V., Feingersh, R.P., and Mohazzab, H.K.M., Mechanisms of transduction of Signal Oxidant—Nitric Oxide in the Vascular Tissue, Biokhimiya, 1998, vol. 63, no. 7, pp. 958–965.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. F. Kirichuk
    • 1
  • A. N. Ivanov
    • 1
  • O. N. Antipova
    • 1
  • A. P. Krenitskii
    • 2
  • A. V. Maiborodin
    • 2
  • V. D. Tupikin
    • 2
  • O. V. Betskii
    • 3
  1. 1.Department of Normal PhysiologySaratov State Medical UniversityRussia
  2. 2.Open Joint Stock Company Central Research Institute of Measurement EquipmentSaratovRussia
  3. 3.Institute of Radiotechnics and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations