Skip to main content
Log in

Mathematical Simulation of the Distribution of the Electron Beam Current during Pulsed Heating of a Metal Target

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We study a model of the current distribution during heating of the surface of a tungsten sample under pulsed exposure to an electron beam. The model is based on solving the equations of electrodynamics and the two-phase Stefan problem for calculating the temperature in the sample region using a cylindrical coordinate system. The model parameters were taken from experiments at the “Beam of Electrons for Materials Test Applications” (BETA) stand created at the Budker Institute of Nuclear Physics. The particular case of axial symmetry is considered without taking the electromotive forces into account. The current is considered as a possible source of rotation of the substance which is observed in the experiment. The values of the current and the acceleration of matter at a surface temperature of over \(6000 \)K were obtained. The results of the simulation show that, to obtain an acceleration capable of initiating the experimentally observed rotation of the melt, it is necessary to take into account some alternative mechanisms of creating a current in the system with consideration of the evaporation of tungsten above the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Vyacheslavov, A. Arakcheev, A. Burdakov, I. Kandaurov, A. Kasatov, V. Kurkuchekov, K. Mekler, V. Popov, A. Shoshin, D. Skovorodin, Yu. Trunev, and A. Vasilyev, “Novel Electron Beam Based Test Facility for Observation of Dynamics of Tungsten Erosion under Intense ELM-Like Heat Loads,” AIP Conference Proceedings 1771, 060004 (2016).

  2. A. S. Arakcheev, D. E. Apushkinskaya, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, G. G. Lazareva, A. G. Maksimova, V. A. Popov, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, and L. N. Vyacheslavov, “Two-Dimensional Numerical Simulation of Tungsten Melting under Pulsed Electron Beam,” Fusion Engineering and Design 132, 13–17 (2018).

    Article  Google Scholar 

  3. G. G. Lazareva, A. S. Arakcheev, A. A. Vasilyev, and A. G. Maksimova, “Numerical Simulation of Tungsten Melting under Fusion Reactor-Relevant High-Power Pulsed Heating,” Smart Innovation, Systems and Technologies 133, 41–51 (2019).

    Article  Google Scholar 

  4. G. G. Lazareva, A. S. Arakcheev, A. V. Burdakov, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, A. G. Maksimova, V. A. Popov, A. A. Shoshin, A. V. Snytnikov, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, and L. N. Vyacheslavov, “Numerical Model of High-Power Transient Heating of Tungsten with Considering of Various Erosion Effects,” IOP Conf. Series: J. Phys.: Conf. Series 1103, 012001 (2018).

    Article  Google Scholar 

  5. G. G. Lazareva, A. S. Arakcheev, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, A. G. Maksimova, V. A. Popov, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, and L. N. Vyacheslavov, “Computational Experiment for Solution of the Stefan Problem with Nonlinear Coefficients,” AIP Conference Proceedings 2025, 080005 (2018).

    Article  Google Scholar 

  6. P. Tolias, “Analytical Expressions for Thermophysical Properties of Solid and Liquid Tungsten Relevant for Fusion Applications,” Nuclear Materials and Energy 13, 42–57 (2017).

    Article  Google Scholar 

  7. J. Jackson, Classical Electrodynamics (Wiley, New York, 1998; Mir, Moscow, 1965).

    MATH  Google Scholar 

  8. H. Buchholz, Calculation of Electric and Magnetic Fields (Izd. Inostr. Literatury, Moscow, 1961) [in Russian].

    Google Scholar 

  9. W. R. Smythe, Static and Dynamic Electricity (Edwards Brothers, Ann Arbor, Mich., 1936; Izd. Inostr. Literatury, Moscow, 1954).

    MATH  Google Scholar 

  10. N. N. Yanenko, Subincremental Method for Solution of Multidimensional Problems of Mathematical Physics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  11. V. P. Zagonov, “Mathematical Modeling of the Electromagnetic Effect of Pulsed Fields to Complex Technical Systems,” in Functioning and Development of Complex National Economic, Technical, Energy, Transport Systems, Communication Systems, and Communications (Znanie, Moscow, 1998), pp. 392–394.

  12. M. E. Zhukovskii, “Self-Consistent Quasi-3D Model of Radiation Excitation of Electromagnetic Fields,” Mat. Modelir. 8 (4), 3–20 (1996).

    Google Scholar 

  13. A. A. Samarskii and E. S. Nikolaev, Methods of Solution of Grid Equations (Fizmatgiz, Moscow, 1978) [in Russian].

    Google Scholar 

  14. V. P. Il’in, Numerical Methods for Solution of Electrophysics Problems (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  15. R. G. Strongin, V. P. Gergel’, V. A. Grishagin, and K. A. Barkalov, Parallel Computing in Problems of Global Optimization (Izd. Moskov. Gos. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  16. A. A. Vasilyev, A. S. Arakcheev, I. A. Bataev, V. A. Bataev, A. V. Burdakov, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, K. I. Mekler, V. A. Popov, A. A. Shoshin, D. I. Skovorodin, Yu. A. Trunev, and L. N. Vyacheslavov, “Observation of the Tungsten Surface Damage under ITER-Relevant Transient Heat Loads during and after Electron Beam Pulse,” AIP Conference Proceeding 1771, 060013 (2016).

    Article  Google Scholar 

Download references

Funding

The authors were supported by the Russian Foundation for Basic Research (project no. 19–01–00422).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. G. Lazareva, V. A. Popov, A. S. Arakcheev, A. V. Burdakov, I. V. Schwab, V. L. Vaskevich, A. G. Maksimova, N. E. Ivashin or I. P. Oksogoeva.

Additional information

Translated by L.B. Vertgeim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazareva, G.G., Popov, V.A., Arakcheev, A.S. et al. Mathematical Simulation of the Distribution of the Electron Beam Current during Pulsed Heating of a Metal Target. J. Appl. Ind. Math. 15, 292–301 (2021). https://doi.org/10.1134/S1990478921020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478921020101

Keywords

Navigation