Monomials in quadratic forms

  • A. V. Seliverstov


We obtain some constraints on the zero-nonzero pattern of entries in the matrix of a real quadratic form which attains a minimum on a large set of vertices in the multidimensional cube centered at the origin whose edges are parallel to the coordinate axes. In particular, if the graph of the matrix contains an articulation point then the set of the minima of the corresponding quadratic form is not maximal (with respect to set inclusion) among all such sets for various quadratic forms.


discrete optimization quadratic form polytope facet graph matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Beresnev, Discrete Problems of Location and Polynomials on Boolean Variables (Sobolev Inst. Mat., Novosibirsk, 2005) [in Russian].Google Scholar
  2. 2.
    V. L. Beresnev, “Local Search Algorithms for the Problem of Competitive Location of Enterprises,” Avtomat. i Telemekh. No. 3, 12–27 (2012) [Automat. Remote Control 73 (3), 425–439 (2012)].Google Scholar
  3. 3.
    V. L. Beresnev, E. N. Goncharov, and A. A. Mel’nikov, “Local Search with a Generalized Neighborhood in the Optimization Problem for Pseudo-Boolean Functions” Diskretn. Anal. Issled. Oper. 18(4), 3–19 (2011) [J. Appl. Indust. Math. 6 (1), 22–30 (2012)].zbMATHGoogle Scholar
  4. 4.
    K. Yu. Gorbunov, A. V. Seliverstov, and V. A. Lyubetskii, “Geometric Relationship Between Parallel Hyperplanes, Quadrics, and Vertices of a Hypercube,” Problemy Peredachi Informatsii 48(2), 113–120 (2012) [Problems Inform. Transmission 48 (2), 185–192 (2012)].Google Scholar
  5. 5.
    A. A. Kolokolov, T. G. Orlovskaya, and M. F. Rybalka, “Analysis of Integer Programming Algorithms With L-Partition and Unimodular Transformations,” Avtomat. i Telemekh. No. 2, 178–190 (2012) [Automat. Remote Control 73 (2), 369–380 (2012)].Google Scholar
  6. 6.
    A. N. Maksimenko, “SAT Polytopes Are the Faces of the Polytopes of the Traveling Salesman Problem,” Diskretn. Anal. Issled. Oper. 18(3), 76–83 (2011).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. N. Maksimenko, “An Analog of the Cook Theorem for Polytopes,” Izv. Vyssh.Uchebn. Zaved.Mat. No. 8, 34–42 (2012) [Russ.Math. (Izvestiya VUZ.Matematika) 56 (8), 28–34 (2012)].Google Scholar
  8. 8.
    A. V. Seliverstov, “Some Notes about Arrangements of Points on Quadrics,” Modelirovanie i Analiz Inform. System 19(4), 72–77 (2012).Google Scholar
  9. 9.
    A. V. Seliverstov and V. A. Lyubetskii, “On Symmetric Matrices With Indeterminate Leading Diagonals,” Problemy Peredachi Informatsii 45(3), 73–78 (2009) [Problems Inform. Transmission 45 (3), 258–263 (2009)].MathSciNetGoogle Scholar
  10. 10.
    A. V. Seliverstov and V. A. Lyubetskii, “On Forms Equal Zero at Each Vertex of the Cube,” Information Processes 11,(3), 330–335 (2011).Google Scholar
  11. 11.
    A. Schrijver, Theory of Linear and Integer Programming (Wiley, New York, 1986; Mir, Moscow, 1991).zbMATHGoogle Scholar
  12. 12.
    A. Ahlatçioğglu, M. Bussieck, M. Esen, M. Guignard, J.-H. Jagla, and A. Meeraus, “Combining QCR and CHR for Convex Quadratic Pure 0-1 Programming Problems With Linear Constraints,” Ann. Oper. Res. 199(1), 33–49 (2012).MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Avis, “Computational Experience With the Reverse Search Vertex Enumeration Algorithm,” Optim. Methods Software 10(2), 107–124 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    D. Avis and K. Fukuda, “A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra,” Discrete Comput. Geom. 8(1), 295–313 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    L. J. Billera and A. Sarangarajan, “All 0-1 Polytopes are Traveling Salesman Polytopes,” Combinatorica 16(2), 175–188 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. Billionnet and S. Elloumi, “Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem,” Math. Program. 109(1), 55–68 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    R. Fukasawa and M. Goycoolea, “On the Exact Separation of Mixed Integer Knapsack Cuts,” Math. Program. 128(1–2), 19–41 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    L. Galli, K. Kaparis, and A. N. Letchford, “Gap Inequalities for Nonconvex Mixed-Integer Quadratic Programs,” Oper. Res. Lett. 39(5), 297–300 (2011).MathSciNetzbMATHGoogle Scholar
  19. 19.
    M. Padberg, “The BooleanQuadric Polytope: Some Characteristics, Facets, and Relatives,” Math. Program. (1989) 45(1–3), 139–172.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    A. Tamir, “New PseudopolynomialComplexity Bounds for the Bounded and Other Integer Knapsack Related Problems,” Oper. Res. Lett. 37(5), 303–306 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Y. Wang, Z. Lü, F. Glover, and J.-K. Hao, “Path Relinking for Unconstrained Binary Quadratic Programming,” European J. Oper. Res. 223(3), 595–604 (2012).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations