On some multidimensional models of gene network functioning

  • A. A. Akinshin
  • V. P. Golubyatnikov
  • I. V. Golubyatnikov
Article

Abstract

We obtain some sufficient conditions for the nonuniqueness of cycles in nonlinear dynamical systems considered as the models of gene network functioning. The constructive methods for the determination of these cycles and the invariant surfaces containing the mare described as well.

Keywords

nonlinear dynamical system gene network model phase portrait invariant domain equilibrium point cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Golubyatnikov and I. V. Golubyatnikov, “On Multidimensional Models of Gene Network Functioning,” Sibirsk.Zh. Industr. Mat. 13(3), 13–18 (2010) [J. Appl. Indust. Math. 5 (3), 343–347 (2011)].MathSciNetMATHGoogle Scholar
  2. 2.
    V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, A. A. Evdokimov, and S. I. Fadeev, “Gene Network Theory,” in Computer Systemic Biology (Izd. Sibirsk. Otdel. Ross. Akad. Nauk, Novosibirsk, 2008), pp. 395–480.Google Scholar
  3. 3.
    V. A. Likhoshvai, Yu. G. Matushkin, and S. I. Fadeev, “Problems of the Theory of Gene Network Functioning,” Sibirsk.Zh. Industr. Mat. 6(2), 64–80 (2003).MathSciNetGoogle Scholar
  4. 4.
    Yu. A. Gaidov and V. P. Golubyatnikov, “On the Existence and Stability of Cycles in Gene Networks with Variable Feedbacks,” Contemp. Math. 553, 61–74 (2011).MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. P. Golubyatnikov, V. A. Likhoshvai, and A. V. Ratushny, “Existence of Closed Trajectories in 3-D Gene Networks,” J. 3-Dimensional Images 3D Forum 18(4), 96–101 (2004).Google Scholar
  6. 6.
    V. P. Golubyatnikov and I. V. Golubyatnikov, “On Periodic Trajectories in Odd-Dimensional Gene Networks Models,” Russian J. Numer. Anal. Math. Modeling 28(4), 397–412 (2011).MathSciNetGoogle Scholar
  7. 7.
    E. P. Volokitin and S. A. Treskov, “The Andronov-Hopf Bifurcation in a Model of a Hypothetical Gene Regulatory Network,” Sibirsk. Zh. Industr. Mat. 8(1), 30–40 (2005) [J. Appl. Indust. Math. 1 (1), 127–136 (2007)].Google Scholar
  8. 8.
    A. A. Akinshin and V. P. Golubyatnikov, “Cycles in Symmetrical Dynamic Systems,” Vestnik Novosib. Gos. Univ. No. 2, 3–12 (2012).Google Scholar
  9. 9.
    V. P. Golubyatnikov, V. A. Likhoshvai, Yu. A. Gaidov, A. G. Kleshchev, and E. A. Lashina, “Regular and Chaotic Dynamics in the Gene Networks Modeling,” in Proceedings of the 8 International Conference “Human and Computers,” Aizu, Japan, 2005 (Aizu, 2005), pp. 7–12.Google Scholar
  10. 10.
    V. P. Golubyatnikov, I. V. Golubyatnikov, and V. A. Likhoshvai, “On the Existence and Stability of Cycles in Five-Dimensional Models of Gene Networks,” Sibirsk. Zh. Vychisl. Mat. 13(4), 403–411 (2010) [Numerical Anal. Appl. 3 (4), 329–335 (2010)].Google Scholar
  11. 11.
    V. I. Arnold,Mathematical Methods of Classical Mechanics (Springer, New York, 1978; Nauka, Moscow, 1979).MATHCrossRefGoogle Scholar
  12. 12.
    A. A. Akinshin, “Computer Analysis of Phase Portraits in Gene Network Models,” in Young Scientists School on Bioinformatics, Novosibirsk, June 2012: Abstracts (Inst. Tsitolog. Genet., Novosibirsk, 2012), p. 13.Google Scholar
  13. 13.
    A. A. Akinshin and V. P. Golubyatnikov, “On Nonuniqueness of Cycles in Dissipative Dynamical Systems of Chemical Kinetics,” in Proceedings of the 6th International Conference “Solitons, Collapses and Turbulence,” Novosibirsk, June 2012 (Inst. Cytology and Genetics, Novosibirsk, 2012), p. 71–72.Google Scholar
  14. 14.
    V. P. Golubyatnikov, V. A. Likhoshvai, E. P. Volokitin, Yu. A. Gaidov, and A. F. Osipov, “Periodic Trajectories and Andronov-Hopf Bifurcations in Models of Gene Networks,” in Bioinformatics of Genome Regulation and Structure II (Springer, Berlin, 2006), pp. 405–414.CrossRefGoogle Scholar
  15. 15.
    A. A. Akinshin and V. P. Golubyatnikov, “Nonuniqueness of Cycles in Gene Networks Models,” in 8 International Conference “Bioinformatics of Genome Regulation and Structure, System Biology,” Novosibirsk, June 2012: Abstracts (Inst. Tsitolog. Genet., Novosibirsk, 2012), p. 28.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. A. Akinshin
    • 1
  • V. P. Golubyatnikov
    • 2
  • I. V. Golubyatnikov
    • 2
  1. 1.Polzunov Altay State Technical UniversityBarnaulRussia
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations