Advertisement

Leibnizian, Robinsonian, and Boolean valued monads

  • S. S. Kutateladze
Article

Abstract

This is an overview of the present-day versions of monadology with some applications to vector lattices and linear inequalities. Two approaches to combining nonstandard set-theoretic models are sketched and illustrated by order convergence, principal projection, and polyhedrality.

Keywords

Dedekind complete vector lattice filter fragments principal projection order convergence up-down descent ascent polyhedral Lagrange principle Boolean valued model 

References

  1. 1.
    A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean Valued Analysis (Nauka, Moscow, 2005) [in Russian].zbMATHGoogle Scholar
  2. 2.
    A. G. Kusraev and S. S. Kutateladze, “Boolean Methods in Positivity,” J. Appl. Indust. Math. 2(1), 81–99 (2008).MathSciNetGoogle Scholar
  3. 3.
    G.W. Leibniz, “Monadology,” In: Collected Works, Vol. 1 (Mysl’, Moscow, 1982), pp. 143–429 [in Russian].Google Scholar
  4. 4.
    S. S. Kutateladze, “The Mathematical Background of Lomonosov’s Contribution,” J. Appl. Indust. Math. 5(2), 155–162 (2011).CrossRefGoogle Scholar
  5. 5.
    W. A. J. Luxemburg, “A General Theory of Monads,” In: Applications of Model Theory to Algebra, Analysis and Probability (Holt, Rinehart and Minston, New York, 1966), pp. 18–86.Google Scholar
  6. 6.
    J. W. Dauben, The Creation of Nonstandard Analysis. A Personal and Mathematical Odyssey (Princeton University Press, Princeton, 1995).zbMATHGoogle Scholar
  7. 7.
    A. E. Gutman and G. A. Losenkov, “Functional Representation of a Boolean Valued Universe,” In: Nonstandard Analysis and Vector Lattices, Ed. by S. S. Kutateladze (Kluwer Academic Publ., Dordrecht, 2000), pp. 81–104.CrossRefGoogle Scholar
  8. 8.
    S. S. Kutateladze, “Boolean Trends in Linear Inequalities,” J. Appl. Indust. Math. 4(3), 340–348 (2010).CrossRefGoogle Scholar
  9. 9.
    B. de Pagter, “The Components of a Positive Operator,” Indag. Math. 45(2), 229–241 (1983).MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. G. Kusraev and S. S. Kutateladze, “Nonstandard Methods and Kantorovich Spaces,” In: Nonstandard Analysis and Vector Lattices, Ed. by S.S. Kutateladze (Kluwer Acad. Publ., Dordrecht, 2000), pp. 1–79.CrossRefGoogle Scholar
  11. 11.
    A. G. Kusraev and S. S. Kutateladze, “On the Calculus of Order Bounded Operators,” Positivity 9(3), 327–339 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    S. S. Kutateladze, “The Farkas Lemma Revisited,” Sibirsk. Mat. Zh. 51(1), 98–109 (2010) [Siberian Math. J. 51 (1), 78–87 (2010)].MathSciNetGoogle Scholar
  13. 13.
    S. S. Kutateladze, “The Polyhedral Lagrange Principle,” Sibirsk. Mat. Zh. 52(3), 615–618 (2011) [Siberian Math. J. 52 (3), 484–486 (2011)].Google Scholar
  14. 14.
    M. Fiedler et al., Linear Optimization Problems with Inexact Data (Springer, New York, 2006).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations