Advertisement

Astrophysical Bulletin

, Volume 74, Issue 4, pp 365–378 | Cite as

Galaxy Clusters and Their Outskirts: the “Red Sequence”, Star Formation Rate, Stellar Mass

  • F. G. KopylovaEmail author
  • A. I. Kopylov
Article
  • 8 Downloads

Abstract

We study the nearest outskirts (R < 3R200c) of 40 groups and clusters of galaxies of the local Universe (0.02 < z < 0.045 and 300 km s-1 < σ < 950 km s-1). Using the SDSS DR10 catalog data, we determined the stellar mass of galaxy clusters corresponding to Ks-luminosity (which we determined earlier based on the 2MASX catalog data) (M*/M) ∝ (LK/L⊙)1.010±0.004 (MK < - 21m.5, R < R200c). We also found the dependence of the galaxy cluster stellar mass on halo mass: (M*/M) ∝ (M200c/M)0.77±0.01. Our results show that the fraction of galaxies with quenched star formation (MK < -21m) is maximal in the central regions of the galaxy clusters and equals, on the average, 0.81 ± 0.02; it decreases to 0.44 ± 0.02 outside of the projected radius Rsp (2 < R/R200c < 3), which we found from the observed profile, but still remains higher than that in the field by 27%. The fraction of early-type “red sequence” galaxies decreases from 0.54 ± 0.02 in the center to 0.24 ± 0.01 beyond Rsp, reaching its field value.

Keywords

galaxies clusters-galaxies star formation-galaxies evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research has made use of the NASA/IPAC Extragalactic Database (NED, http://nedwww.ipac.caltech.edu), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, Sloan Digital Sky Survey (SDSS, http://www.sdss.org), which is supported by Alfred P. Sloan Foundation, the participant institutes of the SDSS collaboration, National Science Foundation, and the United States Department of Energy and Two Micron All Sky Survey (2MASS, http://www.ipac.caltech.edu/2mass/releases/allsky/).

References

  1. 1.
    A. Dressler, Astrophys. J. 236, 351 (1980).ADSGoogle Scholar
  2. 2.
    M. L. Balogh, I. K. Baldry, R. Nichol, et al., Astrophys. J. 615, L101 (2004).Google Scholar
  3. 3.
    G. Kauffmann, C. D. M. White, T.M. Heckman, et al., Monthly Notices Royal Astron. Soc. 353, 713 (2004).ADSGoogle Scholar
  4. 4.
    S. Mahajan, G. A. Mamon, and S. Raychaudhury, Monthly Notices Royal Astron. Soc. 418, 2816 (2011).ADSGoogle Scholar
  5. 5.
    J. D. Hernádez-Fernádez, J. D. Haines, A. Diaferio, et al., Monthly Notices Royal Astron. Soc. 438, 2186 (2014).ADSGoogle Scholar
  6. 6.
    A. Muzzin, R. F. J. van den Burg, S. L. McGee, et al., Astrophys. J. 796, 65 (2014).ADSGoogle Scholar
  7. 7.
    K. A. Oman, M. J. Hudson, and P. S. Behroozi, Monthly Notices Royal Astron. Soc. 431, 2307 (2013).ADSGoogle Scholar
  8. 8.
    K. A. Oman and M. J. Hudson, Monthly Notices Royal Astron. Soc. 463, 3083 (2016).ADSGoogle Scholar
  9. 9.
    J. Rhee, R. Smith, H. Choi, et al., arXiv:1704.04243 (2017).Google Scholar
  10. 10.
    M. L. Balogh, S. L. Morris, H. K. C. Yee, et al., Astrophys. J. 527, 54 (1999).ADSGoogle Scholar
  11. 11.
    M. L. Balogh, J. F. Navarro, and S. L. Morris, Astrophys. J. 540, 113 (2000).ADSGoogle Scholar
  12. 12.
    C. P. Haines, M. J. Pereira, G. P. Smith, et al., Astrophys. J. 775, 126 (2015).ADSGoogle Scholar
  13. 13.
    A. R. Wetzel, J. L. Tinker, and C. Conroy, Monthly Notices Royal Astron. Soc. 424, 232 (2012).ADSGoogle Scholar
  14. 14.
    S. P. D. Gill, A. Knebe, and B. K. Gibson, Monthly Notices Royal Astron. Soc. 356, 1327 (2005).ADSGoogle Scholar
  15. 15.
    B. R. McNamara and P. E. J. Nulsen, Annual Rev. Astron. Astrophys. 45, 117 (2007).ADSGoogle Scholar
  16. 16.
    K. Bekki, W. J. Couch, and Y. Shioya, Astrophys. J. 577, 651 (2002).ADSGoogle Scholar
  17. 17.
    J. E. Gunn and J. R. I. Gott, Astrophys. J. 176, 1 (1972).ADSGoogle Scholar
  18. 18.
    V. Quilis, B. Moore, and R. Bower, Science 288, 1617 (2000).ADSGoogle Scholar
  19. 19.
    A. I. Zabludoff and J. S. Mulchaey, Astrophys. J. 496, 39 (1998).ADSGoogle Scholar
  20. 20.
    D. Olave-Rojas, P. Cerulo, R. Demarco, et al., arXiv:1806.08435 (2018).Google Scholar
  21. 21.
    F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 70, 123 (2015).ADSGoogle Scholar
  22. 22.
    F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 73, 267 (2018).ADSGoogle Scholar
  23. 23.
    C. P. Ahn, R. Alexandroff, C. Allende Prieto, et al., Astrophys. J. Suppl. 211, 17 (2014).ADSGoogle Scholar
  24. 24.
    T. H. Jarrett, T. Chester, R. Cutri, et al., Astrophys. J. 119, 455 (1997).Google Scholar
  25. 25.
    F. G. Kopylova, Astrophysical Bulletin 68, 253 (2013).ADSGoogle Scholar
  26. 26.
    F. G. Kopylova and A. I. Kopylov, Astronomy Letters 39, 3 (2013).ADSGoogle Scholar
  27. 27.
    A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 70, 243 (2015).ADSGoogle Scholar
  28. 28.
    G. A. Mamon, T. Sanchis, E. Salvador-Sole, and M.J. Solanes, Astron. and Astrophys. 414, 445 (2004).ADSGoogle Scholar
  29. 29.
    V. R. Eke, S. Cole, and C. S. Frenk, Monthly Notices Royal Astron. Soc. 282, 263 (1996).ADSGoogle Scholar
  30. 30.
    S. More, B. Diemer, and A. V. Kravtsov, Astrophys. J. 810, 36 (2015).ADSGoogle Scholar
  31. 31.
    B. Tully, Astron. J. 149, 54 (2015).ADSGoogle Scholar
  32. 32.
    S. More, H. Miyatake, M. Takada, et al., Astrophys. J. 825, 39 (2016).ADSGoogle Scholar
  33. 33.
    C. Chang, E. Baxter, B. Jain, et al., Astrophys. J. 864, 83 (2018).ADSGoogle Scholar
  34. 34.
    A. Raichoor and S. Andreon Astron. and Astrophys. 570, A123 (2014).ADSGoogle Scholar
  35. 35.
    M. D. Gladders, O. Lopez-Cruz, H. K. C. Yee, and T. Kodama, Astrophys. J. 501, 571 (1998).ADSGoogle Scholar
  36. 36.
    B. Garilli, D. Bottini, D. Maccagni, et al., Astro-phys. J. Suppl. 105, 191 (1996).ADSGoogle Scholar
  37. 37.
    M. Scodeggio, Astron. J. 121, 2413 (2001).ADSGoogle Scholar
  38. 38.
    O. Lò pez-Cruz, W. A. Barkhouse, and H. K. C. Yee, Astrophys. J. 614, 679 (2004).ADSGoogle Scholar
  39. 39.
    A. Aragon-Salamanca, R. S. Ellis, and R. M. Sharples, Monthly Notices Royal Astron. Soc. 248, 128 (1991).ADSGoogle Scholar
  40. 40.
    S. A. Stanford, P. R. M. Eisenhardt, and M. Dickinson, Astrophys. J. 492, 461 (1998).ADSGoogle Scholar
  41. 41.
    P. G. van Dokkum, M. Franx, D. Fabricant, et al., Astrophys. J. 541, 95 (2000).ADSGoogle Scholar
  42. 42.
    J. P. Blakeslee, Astrophys. J. 596L, 143 (2003).ADSGoogle Scholar
  43. 43.
    S. Andreon and M. Huertas-Company, Astron. and Astrophys. 526, A11 (2011).ADSGoogle Scholar
  44. 44.
    G. A. Mamon, A. Biviano, and G. Murante, Astron. and Astrophys. 520, A30 (2010).ADSGoogle Scholar
  45. 45.
    S. Barsanti, M. S. Owers, S. Brough, et al., arXiv:1803.05076 (2018).Google Scholar
  46. 46.
    C. Conroy, J. E. Gunn, and M. White, Astrophys. J. 699, 486 (2009).ADSGoogle Scholar
  47. 47.
    M. Bernardi, A. Meert, R.K. Sheth, et al., Monthly Notices Royal Astron. Soc. 436, 697 (2013).ADSGoogle Scholar
  48. 48.
    Y.-T. Lin, J. J. Mohr, and S. A. Stanford, Astrophys. J. 610, 745 (2004).ADSGoogle Scholar
  49. 49.
    M. Ramella, W. Boschin, M. Geller, et al., Astron. J. 128, 2022 (2004).ADSGoogle Scholar
  50. 50.
    M. A. Strauss, D. H. Weinberg, R. H. Lupton, et al., Astron. J. 124, 1810 (2002).ADSGoogle Scholar
  51. 51.
    R. Feldmann, Monthly Notices Royal Astron. Soc. 470, L59 (2017).ADSGoogle Scholar
  52. 52.
    A. R. Wetzel, J. L. Tinker, C. Conroy, et al., Monthly Notices Royal Astron. Soc. 439, 2687 (2014).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Special Astrophysical ObservatoryRussian Academy of SciencesNizhnii ArkhyzRussia

Personalised recommendations