Astrophysical Bulletin

, Volume 72, Issue 1, pp 58–66 | Cite as

Spectrum and physical conditions in microflare generation regions at decimeter-wave frequencies

  • L. V. Yasnov
  • V. M. Bogod
  • A. A. Gofman
  • O. M. Stupishina


The event of March 11, 2011 was used to study decimeter-wave microflares (MF) in solar active regions. A theoretical interpretation has been proposed for the nature and generation mechanism of decimeter-waveMFs, which is based on an analysis of the phenomenon of double plasma resonance and subsequent transformation of upper hybrid waves when they interact with low-frequency plasma waves. It is shown that MFs should form in the active regions between magnetic fields of opposite direction, where magnetic-field strength reaches 100–150 G in the transition region. We report the spectral properties of MFs computed with the allowance for inverse bremsstrahlung and cyclotron absorption and for the increment of upper-hybrid waves. It is shown that the transition region is the most likely place of MF generation within the framework of the model of electron-density and temperature. It is also shown that within the framework of electron density and temperature model in the active region the most likely MF generation place in the solar atmosphere is the transition region. MFs were observed at frequencies from 1.036 to 1.306 Hz, which is consistent with model computations.

Key words

Sun: magnetic fields Sun: radio radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Bogod, Q. Fu, and L. V. Yasnov, ESA SP 448, 1041 (1999).ADSGoogle Scholar
  2. 2.
    V. M. Bogod, C. Mercier, and L. V. Yasnov, J. Geophys. Res. 106, 25353 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    V. M. Bogod and L. V. Yasnov, Astronomy Reports 45, 643 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    V. M. Bogod and L. V. Yasnov, Astron. Astrophys. Transactions 20, 459 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Bogod and L. V. Yasnov, Astronomy Reports 49, 144 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    L. V. Yasnov, V. M. Bogod, and A. G. Stupishin, Solar Physics 249, 37 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Zhelezniakov and E. Y. Zlotnik, Solar Physics 43, 431 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Zhelezniakov and E. Y. Zlotnik, Solar Physics 44, 461 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    C. L. Selhorst, N, A. Silva-Valio, and J. E. R. Costa, Astron. and Astrophys. 488, 1079 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    J. Kuijpers, Astron. and Astrophys. 40, 405 (1975).ADSGoogle Scholar
  11. 11.
    L. V. Yasnov, Solar Physics 289, 1215 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    D. G. Wentzel, Astron. and Astrophys. 100, 20 (1981).ADSGoogle Scholar
  13. 13.
    D. G. Wentzel, Solar Physics 103, 141 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    S. D. Spicer, A. O. Benz, and J. D. Huba, Astron. and Astrophys. 105, 221 (1981).ADSGoogle Scholar
  15. 15.
    V. V. Zheleznyakov, Radiation in Astrophysical Plasma (Yanus-K, Moscow, 1997)Google Scholar
  16. 16.
    R. M. Winglee and G. A. Dulk, Astrophys. J. 307, 808 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    L. V. Yasnov and M. Karlicky, Solar Physics 219, 289 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    A. A. Kuznetsov and Y. T. Tsap, Solar Physics 241, 127 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. V. Yasnov
    • 1
  • V. M. Bogod
    • 2
  • A. A. Gofman
    • 2
  • O. M. Stupishina
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. Petersburg Branch of the Special Astrophysical Observatory of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations