Advertisement

Russian Journal of Pacific Geology

, Volume 13, Issue 4, pp 350–363 | Cite as

Concentrically-Zoned Massifs of the Tamanvayam Group (Koryak–Kamchatka Platiniferous Belt): Structure, Age, Petrological and Geochemical Aspects

  • A. V. KutyrevEmail author
  • T. S. Zhirnova
Article
  • 10 Downloads

Abstract

The paper presents new geological, petrological, and geochemical data on the dunite–clinopyroxenite–gabbro massifs of the Tamanvayam area. The time of formation of the intrusions is specified using U–Pb zircon dating. The Machevna Massif is mainly composed of gabbroids and clinopyroxenites, which are related by gradual facies transitions and intruded by amphibole gabbro, leucogabbro, and monzogabbro. The youngest rocks, cutting across all of the above-described varieties, are granites and granodiorites (tonalites), which make up composite injection bodies and small stocks in the central part of the massif. According to the new U–Pb dates, all of the intrusive rocks of the Machevna and Poputny intrusions were formed in a narrow time range of 73.1–67.7 Ma. The obtained range overlaps the formation interval of the siliceous volcanogenic sequences of the Achaivayam Formation (biostratigraphic studies, retrospective data). The geochemical similarity of the gabbroids and pyroxenites with intersecting amphibole gabbros and leuco- and monzogabbros allows us to attribute them to a single magmatic complex. The geochemical affinity and the penecontemporaneous formation of the intrusive rocks of the Tamanvayam area and volcanics of the Achaivayam Formation indicate their formation during a single tectonomagmatic event. At the same time, the gabbroids and pyroxenites can be considered as comagmatic rocks of the basalts and picrobasalts of the Achaivayam Formation. The high-Ca picrobasalts of the Achaivayam Formation that developed near the Machevna intrusion were presumably derived from parental melts of concentrically zonal massifs.

Keywords:

Ural–Alaskan type concentrically zoned massifs Koryak Highland dunite wehrlite clinopyroxenite gabbro 

Notes

ACKNOWLEDGMENTS

We are grateful to B.A. Markovsky and A.V. Razumnyi for the discussion of different aspects of the evolution of the Tamanvayam Group massifs and associated volcanic rocks. We also thank all colleagues who participated in the 2015–2016 field works. E.G. Sidorov is thanked for kindly given samples of dunites of the Machevna Massif. The comments of reviewer V.A. Gur’yanov significantly improved the manuscript.

FUNDING

This work was partially supported by the Russian Science Foundation (RSF) (project no. 16-17-10145).

REFERENCES

  1. 1.
    O. V. Astrakhantsev, V. G. Batanova, and A. S. Perfil’ev, “Structure of the Gal’moenan dunite–clinopyroxenite–gabbro massif,” Geotektonika, No. 2, 47–62 (1991).Google Scholar
  2. 2.
    V. G. Batanova, O. V. Astrakhantsev, and E. G. Sidorov, “Dunites of the Gal’moenan hyperbasite–gabbro massif (Koryak highland),” Izv. AN SSSR. Seriya Geol, No. 1, 24–35 (1991).Google Scholar
  3. 3.
    V. G. Batanova and O. V. Astrakhantsev, “Tectonic position and genesis of the zoned mafic–ultramafic plutons of the northern Olyutorka zone, Koryak higland,” Geotektonika, No. 2, 87–103 (1992).Google Scholar
  4. 4.
    A. L. Basharkevich, State Geological Map of the USSR. 1 : 200 000. Koryak Series. P-59-XXXIII, XXXIV, 0-59-III (1979).Google Scholar
  5. 5.
    E. Yu. Vil’danova, et al., Koryak–Kamchatka Region as a New Platinum Province of Russia, Ed. By E.Yu. Vil’danova et al. (VSEGEI, St. Petersburg, 2002) [in Russian].Google Scholar
  6. 6.
    State Geological Map of the Russian Federation. 1: 1 000 000 (3rd Generation). Koryak–Kamchatka Series. Sheet R-59—Pakhachi: Explanatory Note (Kartograf. fabrika VSEGEI, St. Petersburg, 2017) [in Russian].Google Scholar
  7. 7.
    I. A. Gottman, E. V. Pushkarev, V. S. Kamenetskii, and A. V. Ryazantsev, “Composition of magmatic inclusions in porphyritic phenocrysts of Cr-spinel from ankaramites of the South Urals,” Yearbook-2015 (IGG UrO RAN, 2016), pp. 86–91.Google Scholar
  8. 8.
    A. E. Izokh, A. V. Vishnevskii, G. V. Polyakov, et al., “The Ureg Nuur Pt-bearing volcanoplutonic picrite–basalt association in the Mongolian Altay as evidence for a Cambrian–Ordovician large igneous province,” Russ. Geol. Geophys. 51 (5), 521–533 (2010).CrossRefGoogle Scholar
  9. 9.
    Map of Mineral Resources of the Kamchatka Region. 1 : 500 000: Brief Explanatory Note. Catalog of Deposits, Occurrences, Mineralization Points, and Dispersion Haloes of Mineral Resources, Ed. by Yu. F. Frolov (VSEGEI, St. Petersburg–Petropavlovsk-Kamchatskii, 1999) [in Russian].Google Scholar
  10. 10.
    P. K. Kepezhinskas, L. B. Efremova, and N. A. So-rokina, “Rare-earth elements in the early island-arc plutonic complexes,” Geokhimiya, No. 4, 548–556 (1991).Google Scholar
  11. 11.
    F. Sh. Kutyev, E. G. Sidorov, V. S. Reznichenko, and V. L. Semenov, “New data on PGE in zoned ultrabasic complexes of the soithern Koryak highland,” Dokl. Akad. Nauk SSSR 317 (6), 1458–1461 (1991).Google Scholar
  12. 12.
    A. V. Kutyrev, E. G. Sidorov, A. V. Antonov, and V. M. Chubarov, “Platinum group mineral assemblage of the Prizhimny creek (Koryak highland),” Russ. Geol. Geophys. 59 (8), 935–944 (2010).CrossRefGoogle Scholar
  13. 13.
    B. A. Markovsky and V. K. Rotman, Geology and Petrology of Ultrabasic Volcanism (Nedra, Leningrad, 1981) [in Russian].Google Scholar
  14. 14.
    B. A. Markovsky, “Marginal–oceanic type of rift ultramafic–mafic magmatism of the Asian–Pacific transital,” in Geology and Metallogeny of the Ultramafic–Mafic and Granitoid Intrusive Associations of Fold Areas, (Yekaterinburg, 2004), pp. 44–48 [in Russian].Google Scholar
  15. 15.
    A. B. Osipenko, E. G. Sidorov, A. P. Kozlov, E. A. Landa, G. V. Ledneva, and B. A. Markovsky, “Geochemistry of magmatic series of the Gal’moenan mafic–ultramafic massif, Koryakia,” Tikhookean. Geol. 21 (4), 79–90 (2002).Google Scholar
  16. 16.
    E. V. Pushkarev, Petrology of the Uktus Dunite–Clinopyroxene–Gabbro Massif (Central Urals) (UrO RAN, Yekaterinburg, 2000) [in Russian].Google Scholar
  17. 17.
    A. V. Razumnyi, State Geological Map of the Russian Federation. 1:200 000. 2nd Ed. Koryak Highland, Sheet P-58-XXIX (Khailino): Explanaory Note (Izd-vo SPb kartfabriki VSEGEI, St. Petersburg, 2002) [in Russian].Google Scholar
  18. 18.
    E. G. Sidorov, A. P. Kozlov, and N. D. Tolstykh, Gal’moenanMafc–Ultramafic Massif and its PGE Potential (Nauch. mir, Moscow, 2012) [in Russian].Google Scholar
  19. 19.
    G. B. Fershtater and E. V. Pushkarev, “Magmatic clinopyroxenites of the Urals and its evolution,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 13–23 (1987).Google Scholar
  20. 20.
    V. G. Batanova, A. N. Pertsev, V. S. Kamenetsky, A. A. Ariskin, A. G. Mochalov, and A. V. Sobolev, “Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenite–dunite plutonic complex, Koryak Highland (Far East Russia),” J. Petrol. 46, 1345–1366 (2005).CrossRefGoogle Scholar
  21. 21.
    L. P. Black, S. L. Kamo, C. M. Allen, J. N. Aleinikoff, D. W. Davis, R. J. Korsch, and C. Foudoulis, “Temora 1: a new zircon standard for Phanerozoic U-Pb geochronology,” Chem. Geol. 200, 155–170 (2003).CrossRefGoogle Scholar
  22. 22.
    F. N. Della-Pasqua and R. Varne, “Primitive ankaramitic magmas in volcanic arcs: a melt-inclusion approach,” Can. Mineral. 35, 291–312 (1997).CrossRefGoogle Scholar
  23. 23.
    T. N. Irvine, “Bridget Cove volcanics, Juneau Arc, Alaska: possible parental magma of Alaskan-type ultramafic complexes,” Carnegie Inst. Year-Book 72, 478–491 (1973).Google Scholar
  24. 24.
    T. N. Irvine, “Petrology of the Duke Island ultramafic complex, Southeastern Alaska,” Geol. Soc. Amer. Mem. 13, (1974).Google Scholar
  25. 25.
    P. K. Kepezhinskas, I. Reuber, H. Tanaka, and S. Myashita, “Zoned calc-alkaline plutons in Northeastern Kamchatka: implications for crustal growth in magmatic arcs,” Mineral. Petrol 49, 147–174 (1993).CrossRefGoogle Scholar
  26. 26.
    P. K. Kepezhinskas, R. N. Taylor, and H. Tanaka, “Geochemistry of plutonic spinels from the North Kamchatka Arc: comparisons with spinels from other tectonic settings,” Mineral. Mag. 57, 575–589 (1993).CrossRefGoogle Scholar
  27. 27.
    A. N. Larionov, V. A. Andreichev, and D. G. Gee, “The Vendian alkaline igneous suite of Northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite,” The Neoproterozoic Timanide Orogen of Eastern Baltica, Ed. by D. G. Gee and V. L. Pease, Geol. Soc. London. Mem., 30, (2004).Google Scholar
  28. 28.
    K. R. Ludwig, User’s Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel, (Berkley Geocrhonol. Center Publ., 2005). http://www.bgc.org/klprogrammenu.htmlGoogle Scholar
  29. 29.
    W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).CrossRefGoogle Scholar
  30. 30.
    E. V. Pushkarev, V. Kamenetsky, I. Gottman, and G. Yaxley, “The PGM-bearing volcanic ankaramite (Urals, Russia): bridging ankaramite parental magmas and the Ural-Alaskan type intrusions,” 12 th International Platinum Symposium (IGG UB RAS, Yekaterinburg, 2014), pp. 204–205.Google Scholar
  31. 31.
    J. S. Stacey and J. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two-stage model,” Earth Planet. Sci. Lett. 26, 207–221 (1975).CrossRefGoogle Scholar
  32. 32.
    S. -S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. (Spec. Publ. London 42, 313–345 (1989).Google Scholar
  33. 33.
    M. Wiedenbeck, P. Alle, F. Corfu, W. L. Griffin, M. Meier, F. Oberli, A. von Quadt, J. C. Roddick, and W. Spiegel, “Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses,” Geostand. Newslett. 19, 1–23 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of SciencesPetropavlovsk-KamchatskyRussia
  2. 2.Korzhinsky Institute of Experimental Mineralogy, Russian Academy of SciencesChernogolovkaRussia
  3. 3.Karpinsky All-Russian Research Geological InstituteSt. PetersburgRussia

Personalised recommendations