Russian Journal of Pacific Geology

, Volume 12, Issue 4, pp 320–339 | Cite as

Sedimentation Conditions and Provenance Composition of the Upper Jurassic–Lower Cretaceous Deposits of the Upper Pegtymel Depression, Chukotka Terrane

  • E. V. Vatrushkina
  • M. I. Tuchkova


The deposits of the Imlekin Formation of the Upper Pegtymel depression were formed in the southern margin of the Chukotka Terrane synchronously with accretion of the Kulpolney island arc to the Chukotka–Arctic Alaska microplate. The sedimentological structural features of the Upper Jurassic–Lower Cretaceous sections indicate their accumulation within various parts of submarine fans of a shallow marine basin. The submarine slump origin of the boulder–pebble (tillite-like) conglomerates is substantiated. The petrographic, geochemical, and geochronological methods identified two dominant provenances: Triassic clastic rocks and Volgian suprasubduction volcanic rocks. The Middle Volgian–Early Berriasian age of the Imlekin Formation is specified. The geodynamic model proposed explains the change of the sources and direction of the sediment transport in the Volgian.


volcanoclastic complexes turbidites tilloids arc–continent collision zircon dating Chukotka Terrane northeast Russia 



The authors are grateful to the reviewers for constructive criticism and recommendations. This work was supported by the Russian Science Foundation (project no 16-17-10251). The staff of the Geological Institute, Russian Academy of Sciences was supported by the Federal Agency on Science Organizations (project no. 0135-2016-0022 “Geodynamic Aspects of Structure-Forming, Magmatic, and Sedimentary Processes of the Paleozoic–Mesozoic Evolution of the Northwestern Sector of Pacific Belt”).


  1. 1.
    M. A. Baranov, “Nappe tectonics of the Myrgovaam “basin” (northwestern Central Chukotka),” Tikhookean. Geol., No. 3, 17–22 (1995).Google Scholar
  2. 2.
    N. A. Bogdanov and S. M. Til’man, Tectonics and Geodynamics of Northeastern Asia: Explanatory Notes to Tectonic Map of Northeast Asia. 1 : 5 000 000 (IL RAN, Moscow, 1992) [in Russian].Google Scholar
  3. 3.
    G. E. Bondarenko, Tectonics and Geodynamic Evolution of the Northern Pacific Margin (MGU, Moscow, 2004) [in Russian].Google Scholar
  4. 4.
    V. A. Varlamova, B. V. Vyatkin, and G. M. Malysheva, Information Report on the Results of Incomplete Works on the “Creating of Digital Set of Geological Maps” 1 : 500 000 Territory of the Chukotka Autonomous District (Monitoring of Regional Geological Studies on a Scale 1 : 500 000) (Georegion, Anadyr, 2004).Google Scholar
  5. 5.
    E. V. Vatrushkina and M. I. Tuchkova, “Lithological and geochemical features of rocks of the Upper Jurassic Rauchua Formation, Western Chukotka,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 89 (1), 58–73 (2014).Google Scholar
  6. 6.
    E. V. Vatrushkina and M. I. Tuchkova, “Evolution of sedimentation and geodynamic regime in the Late Jurassic–Early Cretaceous within the Chukotka terrane,” in Proceedins of 46th Tectonic Conference on “Tectonics of Eurasian Fold Belts: Similarity, Difference, Characteristic Features of the Youngest Orogeny, and Regional Generalization (GEOS, Moscow, 2014), Vol. 1, pp. 36–40 [in Russian].Google Scholar
  7. 7.
    M. L. Gel’man, “Phanerozoic granite-metamorphic domes in northeastern Siberia. Paper 1. Geological history of Paleozoic and Mesozoic domes,” Tikhookean. Geol. 14 (4), 102–115 (1995).Google Scholar
  8. 8.
    V. A. Genze, Report on Group Geological Survey on a Scale 1 : 50 000 with a Common Prospecting over Area of Sheets R-60-113-V, G; R-60-114-B,G; R-60-125-A,B,B,G; R-60-126-A,B,V,G (Mol’tykanskii OGGS, Pevek 1990).Google Scholar
  9. 9.
    L. P. Zonenshain, M. I. Kuzmin, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR Territory (Nedra, Moscow, 1990), Vol. 2 [in Russian].Google Scholar
  10. 10.
    E. A. Konstantinovskaya, Tectonics of Eastern Asian Margins: Structural Evolution and Geodynamic Modeling (Nauch. mir, Moscow, 2003) [in Russian].Google Scholar
  11. 11.
    V. I. Kopytin, Explanatory Note to the Geological Map of the USSR. 1 : 200 000. Sheet R-60-XXXIII, XXXIV (Magadan, 1977) [in Russian].Google Scholar
  12. 12.
    O. L. Morozov, Geological Structure and Tectonic Evolution of Central Chukotka (GEOS, Moscow, 2001) [in Russian].Google Scholar
  13. 13.
    B. A. Natal’in, Early Mesozoic Eugeosynclinal System in the Northern Circum-Pacific (Nauka, Moscow, 1984) [in Russian].Google Scholar
  14. 14.
    K. V. Paraketsov and G. I. Paraketsova, Stratigraphy and Fauna of the Upper Jurassic and Lower Cretaceous Deposits of Northeast USSR (Nedra, Moscow, 1989) [in Russian].Google Scholar
  15. 15.
    F. J. Pettijohn, Sedimentary Rocks (Harpers, New York, 1975).Google Scholar
  16. 16.
    S. D. Sokolov, Olistostrome Sequences and Ophiolite Nappes of the Lesser Caucasus (Nauka, Moscow, 1977) [in Russian].Google Scholar
  17. 17.
    S. D. Sokolov, M. I. Tuchkova, A. V. Ganelin, et al., “Tectonics of the South Anyui suture, Northeastern Asia,” Geotectonics, 49 (1), 3–26 (2015).CrossRefGoogle Scholar
  18. 18.
    I. V. Tibilov and I. Yu. Cherepanova, Geology of Northern Chukotka—Modern State and Problems (GEOS, Moscow, 2001) [in Russian].Google Scholar
  19. 19.
    P. L. Tikhomirov, V. V. Akinin, and E. Nakamura, “Mesozoic magmatism in the Central Chukotka Peninsula: new U–Pb geochronological data and their geodynamic interpretation,” Dokl. Earth Sci. 419 (2), 261–265 (2008).CrossRefGoogle Scholar
  20. 20.
    A. I. Tselousov, Report on Group Geological Survey on a Scale 1 : 50 000 with a Common Prospecting in the Upper Reaches of the Pegtymel River Basin over an Area of Sheets R-60-127-B, G; 139-A,B,V,G; 140-A,B,V,G; 141-V-a,v,g; G-v,gv of 1986–1991 (Upper Pegtymel GGSO, Pevek, 1992) [in Russian].Google Scholar
  21. 21.
    V. D. Shutov, A. G. Kossovskaya, V. I. Murav’ev, et al., Graywackes (Nauka, Moscow, 1972) [in Russian].Google Scholar
  22. 22.
    T. I. Frolova, L. L. Perchuk, and I. A. Burikova, Magmatism and Transforamtion of the Active Margin Crust (Nedra, Moscow, 1989) [in Russian].Google Scholar
  23. 23.
    J. M. Amato, V. V. Akinin, B. A. Hampton, et al., “Tectonic evolution of the Mesozoic South Anyui suture zone, eastern Russia: a critical component of paleogeographic reconstructions of the Arctic Region,” Geosphere 11 (5), 1–35 (2015).CrossRefGoogle Scholar
  24. 24.
    M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic settings discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92, 181–193 (1986).CrossRefGoogle Scholar
  25. 25.
    A. I. Chemenda, R.-K. Yang, J.-F. Stephan, et al., “New results from physical modeling of arc-continent collision in Taiwan,” Tectonophysics 333 (1–2), 159–178 (2001).CrossRefGoogle Scholar
  26. 26.
    J. C. Crowell, “Origin of pebbly mudstones,” Bull. Geol. Soc. Amer. 68, 993–1010 (1957).CrossRefGoogle Scholar
  27. 27.
    R. H. Dott, “Squantum “tillite”, Massachusetts—evidence of glaciation or subaqueous movements?,” Bull. Geol. Soc. Amer. 72, 1289–1306 (1961).CrossRefGoogle Scholar
  28. 28.
    G. E. Gehrels, “Detrital zircon U-Pb geochronology: current methods and new opportunities,” in Tectonics of Sedimentary Basins: Recent Advances, Ed. by C. Busby and A. A. Perez (Wiley-Blackwell, 2012), pp. 47–62.Google Scholar
  29. 29.
    T. N. Irvine and W. R. A. Barager, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523–548 (1971).CrossRefGoogle Scholar
  30. 30.
    R. W. Le Maitre, P. Bateman, and A. E. A. Dudek, A Classification of Igneous Rocks and Glossary of Terms (Blackwell, Oxford, 1989).Google Scholar
  31. 31.
    P. Lenk-Chevitch, “Beach and stream pebbles,” J. Geol. 67, 103–108 (1959).CrossRefGoogle Scholar
  32. 32.
    H. Martin, “Effect of steeper Archean geothermal gradient on geochemistry of subduction zone magmas,” Geology 14, 753–756 (1986).CrossRefGoogle Scholar
  33. 33.
    E. L. Miller, J. Toro, G. Gehrels, et al., “New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology,” Tectonics 25, 1–19 (2006).Google Scholar
  34. 34.
    E. L. Miller, A. Soloviev, A. Kuzmichev, G. Gehrels, J. Toro, and M. Tuchkova, “Jurassic and Cretaceous foreland basin deposits of the Russian Arctic: separated by birth of the Makarov Basin?,” Norwegian J. Geol. 20, 99–124 (2008).Google Scholar
  35. 35.
    A. Miyashiro, “Classification, characteristics and origin of ophiolites,” J. Geol. 83, 249–281 (1975).CrossRefGoogle Scholar
  36. 36.
    B. D. Roser and R. J. Korsch, “Provenance signatures of sand-stone-mudstone suites determinated using discriminant function analysis of major-element data,” Chem. Geol. 67, 119–139 (1988).CrossRefGoogle Scholar
  37. 37.
    L. J. G. Schermerhorn and W. I. Stanton, “Tilloids in the West Congo Geosyncline,” Quart. J. Geol. Soc. London 119, 201–241 (1963).CrossRefGoogle Scholar
  38. 38.
    R. C. Selley, Applied Sedimentology, 2nd ed. (Academic Press, 2000).Google Scholar
  39. 39.
    G. Shanmugam, “50 years of the turbidite paradigm (1950s−1990s): deep-water processes and facies models—a critical perspective,” Marine Petrol. Geol 17, 285–342 (2000).CrossRefGoogle Scholar
  40. 40.
    S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes,” in Magmatism in the Oceanic Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).Google Scholar
  41. 41.
    M. I. Tuchkova, S. D. Sokolov, and I. R. Kravchenko-Berezhnoy, “Provenance analysis and tectonic setting of the Triassic clastic deposits in Western Chukotka, Northeast Russia,” Stephan Mueller Spec. Publ. Ser. 4, 177–200 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Geological Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations