Russian Journal of Pacific Geology

, Volume 9, Issue 1, pp 11–21 | Cite as

Geochemical evolution of volcanism of Matua Island in the Central Kurils

  • Yu. A. MartynovEmail author
  • A. V. Rybin
  • A. V. Degterev
  • D. S. Ostapenko
  • A. Yu. Martynov


The first comprehensive isotope-geochemical study of volcanogenic rocks of different ages from Matua Island made it possible to distinguish the general stages in the magmatic evolution of the subduction system. The petrological similarity of the rocks from the central and northern chains of the Kuril island arc testifies that they were formed above “hot” geochemically enriched but isotopically depleted lithospheric mantle. The compositional change of the volcanic rocks of Matua Island in the Pleistocene-Holocene suggests a geodynamic transition at that time. Taking into account the similar tendency previously established in the southern Kuril Range (Kunashir Island) and for the Mutnovsky and Gorelyi volcanoes of southern Kamchatka, a global Pleistocene-Holocene tectonic event may be proposed in the evolution of the Kuril-Kamchatka island arc. The finding of the “adakite-like” tephra on Matua Island indicates the presence of felsic adakite-like melts among the eruption products of Sarychev Peak Volcano.


subduction volcanism geochemistry isotopy subduction components back-arc processes Kuril Island arc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kh. A. Arslanov, I. V. Melekestsev, N. G. Razzhigaeva, et al., “Age of the soil-pyroclastic cover and chronology of the volcanic activity on Matua Island, Central Kuril, in Holocene,” in Proceedings of 7th All-Russia Conference on Studying the Quaternry Period, Apatity, Russia, 2011 (Geol. Inst. Kol’sk. Nauch. Ts., St. Petersburg-Apatity), Vol. 1, pp. 43–45 [in Russian].Google Scholar
  2. 2.
    G. S. Gorshkov, Volcanism of the Kuril Island Arc (Nauka, Moscow, 1967) [in Russian].Google Scholar
  3. 3.
    A. V. Degterev, A. V. Rybin, I. V. Melekestsev, and N. G. Razzhigaeva, “Geochemistry of products of the Holocene eruptions of Sarychev Peak Volcano, central Kuril Islands,” in Proceedings of All-Russia Conference “Modern Problems of Geochemistry” in honor of the 95th Anniversary of the Academician V.L. Tauson, Irkutsk, Russia, 2012 (Inst. Geograf., Irkutsk, 2012), Vol. 2, pp. 56–59 [in Russian].Google Scholar
  4. 4.
    T. K. Zlobin, V. N. Piskunov, and T. I. Frolova, “New data on the Earth’s crust structure in the central Kuril island arc,” Dokl. Akad. Nauk SSSR 293, 185–187 (1987).Google Scholar
  5. 5.
    B. V. Levin, I. V. Melekestsev, A. V. Rybin, et al., “Expedition Pik Sarycheva Volcano-2010,” (Kruil islands),” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 6, 152–159 (2010).Google Scholar
  6. 6.
    Yu. A. Martynov, S. V. Kovalenko, S. V. Rasskazov, and E. V. Saranina, “Geochemistry and metallogenic problems of the Cenozoic postsubduction calc-alkaline volcanic rocks of southwestern Primorye,” in Ore Deposits of Continental Margins (Dal’nauka, Vladivostok), Part 1, No. 2, pp. 5–21 [in Russian].Google Scholar
  7. 7.
    Yu. A. Martynov, A. V. Rybin, S. I. Dril’, and A. Yu. Martynov, “Zones of anomalous volcanism of the Kuril islands, Paramushir island,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 4, 17–23 (2009).Google Scholar
  8. 8.
    Yu. A. Martynov, A. I. Khanchuk, D.-I. Kimura, et al., “Geochemistry and petrogenesis of volcanic rocks in the Kuril island arc,” Petrology 18(5), 489–513 (2010).CrossRefGoogle Scholar
  9. 9.
    A. Yu. Martynov, “Role of backarc processes in the origin of across-arc geochemical zoning in volcanics of early evolutionary stages in Kunashir Island,” Petrology 21(5), 489–506 (2013).CrossRefGoogle Scholar
  10. 10.
    N. N. Mel’nikov, “Errors of the double spiking technique in the isotopic analysis of common lead,” Geochem. Int. 43(12), 1228–1234 (2005).Google Scholar
  11. 11.
    Submarine Volcanism and Zoning of the Kuril island arc (Nauka, Moscow, 1992), p. 527 [in Russian].Google Scholar
  12. 12.
    V. M. Savatenkov, I. M. Morozova, and L. K. Levskii, “Behavior of the Sm-Nd, Rb-Sr, K-Ar, and U-Pb isotopic systems during alkaline metasomatism: fenites in the outer-contact zone of an ultramafic-alkaline intrusion,” Geochem. Int. 42(10), 899–920 (2004).Google Scholar
  13. 13.
    E. V. Smirnova, I. N. Mysovskaya, V. I. Lozhkin, and N. N. Pakhomova, “Assessment of spectral noises during use of ICP-MS equipped with magnetic ELEMENT2 sector: rare-earth element determination,” in All-Russian Conference on Analytical Chemistry “Russia’s Analytics, (Moscow, 2004) [in Russian].Google Scholar
  14. 14.
    I. A. Tararin, E. P. Lelikov, and T. Itaya, “Pleistocene submarine volcanism in the eastern Kuril basin, Sea of Okhotsk,” Dokl. Earth Sci. 371, 494–498 (2000).Google Scholar
  15. 15.
    A. A. Chashchin and Yu. A. Martynov, Petrology of the Volcanic Rocks of the Gorelyi and Mutnovsky Volcanoes, South Kamchatka (Dal’nauka, Vladivostok, 2014) [in Russian].Google Scholar
  16. 16.
    J. C. Bailey, “Role of subducted sediments in the genesis of Kuril-Kamchatka island are basalts: Sr isotopic and elemental evidence,” Geochem. J. 30, 289–321 (1996).CrossRefGoogle Scholar
  17. 17.
    B. Baranov, H. K. Wong, K. Dozorova, B. Kapp, T. Ludmann, and V. Karnaukh, “Opening geometry of the Kurile Basin (Okhotsk Sea) as inferred from structural data,” The Island Arc 11, 206–219 (2002).CrossRefGoogle Scholar
  18. 18.
    L. B. Cooper, D. B. Ruscitto, T. Plank, P. J. Wallace, E. M. Syracuse, and C. E. Manning, “Global variations in H2O/Ce: slab surface temperatures beneath volcanic arcs,” Geochem., Geophys., Geosyst. 13(3) (2012). doi:10.1029/2011GC003902.Google Scholar
  19. 19.
    M. J. Defant and M. S. Drummond, “Derivation of some modern are magmas by melting of young subducted lithosphere,” Nature 347, 662–665 (1990).CrossRefGoogle Scholar
  20. 20.
    T. Elliot, “Tracers of the slab,” in Inside the Subduction Factory, Geophys. Monogr. Am. Geophys. Union 138, 23–45 (2003).CrossRefGoogle Scholar
  21. 21.
    Y. Ishizuka, M. Nakagawa, A. Baba, et al., “Along-are variations of K-Ar ages for the submarine volcanic rocks in the Kurile islands,” in 7th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Proceses (JKASP-2011), Petropavlovsk-Kamchatsky, Russia, 2011 (Petropavlovsk-Kamchatsky, 2011), pp. 279–280.Google Scholar
  22. 22.
    M. C. Jhonson and T. Plank, “Dehydration and melting experiments constrain the fate of subducted sediments,” Geochem., Geophys., Geosystem. 13(G3) (1999). doi:10.1029/999GC000014.Google Scholar
  23. 23.
    S. R. Hart, “A large-scale isotope anomaly in the southern hemisphere mantle,” Nature 309, 756–757 (1984).CrossRefGoogle Scholar
  24. 24.
    C. J. Hawkesworth, K. Gallagher, J. M. Hergt, and F. McDermott, “Mantle and slab contribution in arc magmas,” Earth Planet. Sci. 21, 175–204 (1993).CrossRefGoogle Scholar
  25. 25.
    J. Hermann and C. Spandler, “Sediment melts at subarc depths: an experimental study,” J. Petrol. 49(4), 717–740 (2008).CrossRefGoogle Scholar
  26. 26.
    P. B. Kelemen, N. Shimizu, and T. Dunn, “Relative depletion on niobium in some arc magmas and the continental crust: partionining of K, Nd, La and Ce during melt/rock reaction in the upper mantle,” Earth Planet. Sci. Lett. 1, 111–134 (1993).CrossRefGoogle Scholar
  27. 27.
    J.-I. Kimura and A. A. Ariskin, “Calculation of water bearing primary basalt and estimation of source mantle conditions beneath arcs: PRIMACALC2 model for WINDOWS,” Geochem., Geophys., Geosyst. 15(4), 1494–1514 (2014).CrossRefGoogle Scholar
  28. 28.
    C.-T. A. Lee, P. Luffi, T. Plank, H. Dalton, and W. P. Leean, “Constraints on the depths and temperatures of basaltic magma generation on earth and other terrestrial planets using new thermobarometers for mafic magmas,” Earth Planet. Sci. Lett. 279(1–2), 20–33 (2009).CrossRefGoogle Scholar
  29. 29.
    C. E. Manning, “The chemistry of subduction-zone fluids,” Earth Planet. Sci. Lett. 223, 1–16 (2004).CrossRefGoogle Scholar
  30. 30.
    A. Yu. Martynov, J.-I. Kimura, Yu. A. Martynov, and A. V. Rybun, “Geochemistry of Late Cenozoic lavas on Kunashir island, Kurile Arc,” Island Arc 19, 86–104 (2010).CrossRefGoogle Scholar
  31. 31.
    J. A. Pearce, “Role of the sub-continental lithosphere in magma genesis at active continental margins,” in Continental Basalts and Mantle Xenoliths, Ed. by C. J. Hawkesworth and M. J. Norry (Sica Publ., Nantwich, 1983), pp. 230–249.Google Scholar
  32. 32.
    J. A. Pearce, P. D. Kempton, G. M. Nowell, and S. R. Noble, “Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems,” J. Perol 40, 1579–1611 (1999).Google Scholar
  33. 33.
    T. Plank and C. H. Langmuir, “The chemical composition of subducting sediment and its consequences for the crust and mantle,” Chem. Geol. 145, 325–394 (1998).CrossRefGoogle Scholar
  34. 34.
    D. L. Ruscitto, P. J. Wallance, L. B. Cooper, and T. Plank, “Global variations in H2O/Ce: relationship to arc magma geochemistry and volatile fluxes,” Geochem., Geophys., Geosyst. 3(3) (2012). doi: 10.1029/2011GC003887.Google Scholar
  35. 35.
    J. G. Ryan, J. Morris, F. Tera, W. P. Leeman, and A. Tsvetkov, “Cross-arc geochemical variations in the Kurile arc as a function of slab depth,” Science 270, 625–627 (1995).CrossRefGoogle Scholar
  36. 36.
    I. W. Shervais, “Ti-V plots and the petrogenesis of modern and ophiolitic lavas,” Earth Planet. Sci. Lett. 59(1), 101–118 (1982).CrossRefGoogle Scholar
  37. 37.
    S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry (Geol. Soc. Spec. Publ. London, 1989), pp. 313–345.Google Scholar
  38. 38.
    E. M. Sytacuse, P. E. van Keken, and G. A. Abers, “The global range of subduction zone thermal models,” Phys. Earth Inter. 183(1–2), 373–390 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yu. A. Martynov
    • 1
    Email author
  • A. V. Rybin
    • 2
  • A. V. Degterev
    • 2
  • D. S. Ostapenko
    • 1
  • A. Yu. Martynov
    • 1
  1. 1.Far East Geological Institute, Far East BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Institute of Marine Geology and Geophysics, Far East BranchRussian Academy of SciencesYuzhno SakhalinskRussia

Personalised recommendations