Russian Journal of Pacific Geology

, Volume 6, Issue 1, pp 35–41 | Cite as

GPS-based modeling of the interaction between the lithospheric plates in Sakhalin

  • N. F. VasilenkoEmail author
  • A. S. Prytkov


The recent geodynamics of Sakhalin are determined by the convergence between the Eurasian and North American lithospheric plates, which is reflected in the high seismicity of the island. The method of inversion of the horizontal velocities of the island surface with account for the geological features of the region is used to analyze the different models of the convergence between the plates. This made it possible to estimate the depth of the mechanical contact between the plates and the velocities of their convergence for the southern, central, and northern segments of the island.


horizontal velocities of the surface deformation GPS measurements modeling Sakhalin Island 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleksandrov, S.M., Sakhalin Island (Nauka, Moscow, 1973).Google Scholar
  2. 2.
    O. A. Voiekova, S. A. Nesmeyanov, and L. I. Serebryakova, Neotectonics and Active Faults of Sakhalin (Nauka, Moscow, 2007) [in Russian].Google Scholar
  3. 3.
    “Neftegorsk Earthquake of May 27 (28), 1995,” Inform.-Analit. Byul. FSSN. Spec. Iss. (Moscow, 1995), p. 236 [in Russian].Google Scholar
  4. 4.
    L. S. Oskorbin, “Seismicity of Sakhalina,” in Seismic Zoning of Sakhalin (DVNTs AN SSSR, Vladivostok, 1977), pp. 3–22 [in Russian].Google Scholar
  5. 5.
    L. N. Poplavskaya, A. I. Ivashchenko, L. S. Oskorbin, et al., Regional Catalogue of the 1905–2005 Earthquakes of Sakhalin Island (IMGiG DVO RAN, Yuzhno-Sakhalinsk, 2006) [in Russian].Google Scholar
  6. 6.
    A. S. Prytkov, Extended Abstracts of Candidate’s Dissertation in Physics and Mathematics, (IMGiG DVO RAN, Yuzhno-Sakhalinsk, 2008).Google Scholar
  7. 7.
    V. S. Rozhdestvenskii, “Strike-Slip of Northeastern Sakhalin,” Geotektonika, No. 2, 85–97 (1975).Google Scholar
  8. 8.
    V. S. Rozhdestvenskii, “Geodynamic Evolution of the Hokkaido-Sakhalin Fold System,” Tikhookean. Geol., No. 2, 76–88 (1993).Google Scholar
  9. 9.
    S. L. Solov’ev and L. S. Oskorbin, “Scheme of Seismic Zoning of Sakhalin,” in Seismic Zoning of Sakhalin (DVNTs AN SSSR, Vladivostok, 1977), pp. 52–61 [in Russian].Google Scholar
  10. 10.
    M. I. Strel’tsov and A. I. Kozhurin, Active Faults and Catastrophic Earthquakes of Sakhalin (Aprelovskii Active Fault. Trenching Results) (IMGiG DVO RAN, Yuzhno-Sakhalinsk, 2002) [in Russian].Google Scholar
  11. 11.
    V. V. Kharakhinov, S. D. Gal’tsev-Bezyuk, and A. A. Tereshchenkov, “Faults of Sakhlin,” Tikhookean. Geol., No. 2, 77–86 (1984).Google Scholar
  12. 12.
    Z. Altamimi, P. Sillard, and C. Boucher, “ITRF2000: A New Release of the International Terrestinial Reference Frame for Earth Science Applications,” J. Geophys. Res. 107(B10), 2214 (2002).CrossRefGoogle Scholar
  13. 13.
    E. V. Apel, R. Burgmann, G. Steblov, et al., “Independent Active Microplate Tectonics of Northeast Asia from GPS Velocities and Block Modeling,” Geophys. Res. Lett. 33,L11303 (2006). doi: 10.1029/2006GL026077.Google Scholar
  14. 14.
    M. E. Chapman and S. C. Solomon, “North American-Eurasian Plate Boundary in Northeast Asia,” J. Geophys. Res. 81, 921–930 (1976).CrossRefGoogle Scholar
  15. 15.
    C. DeMets, R. G. Gordon, D. F. Argus, et al., “Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions,” Geophys. Res. Lett. 21(20), 2191–2194 (1994).CrossRefGoogle Scholar
  16. 16.
    T. Dixon, J. Decaix, F. Farina, et al., “Seismic Cycle and Rheological Effects on Estimation of Present-Day Slip Rate for the Agua Blanca and San Miguel-Vallecitos, Faults, Northern Baja California, Mexico,” J. Geophys. Res. 107(B10), 2226–2249 (2002).CrossRefGoogle Scholar
  17. 17.
    H. Drewes, The Actual Plate Kinematic and Crustal Deformation Model APKIM2005 as Basis for a Non-Rotating ITRF, Geodetic Reference Frames, Ed. by H. Drewes, in IAG Symposia (Springer, 2009), vol. 134, pp. 95–99. doi:10.1007/978-3-642-00860-3-15, 2009.Google Scholar
  18. 18.
    U. Hugentobler, S. Schafer, and P. Fridez, Bernese GPS Sofware Version 4.2 (Astronom. Inst., Univ. Berne, Berne, 2001).Google Scholar
  19. 19.
    R. W. King, Documentation for the GAMIT GPS Analysis Software, Release 10.0—December 2000 (MIT, 2002).Google Scholar
  20. 20.
    M. G. Kogan and G. M. Steblov, “Current Global Plate Kinematics Form GPS (1995–2007) with the Plate Consistent Reference Frame,” J. Geophys. Res. 113, B04416 (2008). doi: 10.1029/2007JB005353.CrossRefGoogle Scholar
  21. 21.
    C. Kreemer, W. E. Holt, and A. J. Haines, “An Integrated Global Model of Present-Day Plate Motions and Plate Boundary Deformation,” Geophys. J. Int. 154, 8–34 (2003).CrossRefGoogle Scholar
  22. 22.
    K. Shimazaki and Y. Zhao, “Dislocation Model for Strain Accumulation in Plate Collision Zone,” Earth Planet. Sp. 52(11), 1091–1094 (2000).Google Scholar
  23. 23.
    S. Stein and R. G. Gordon, “Statistical Tests of Additional Plate Boundaries from Plate Motion Inversions,” Mar. Geol. 69(2), 401–412 (1984).Google Scholar
  24. 24.
    L. P. Zonenshain and L. A. Savostin, “Geodynamics of the Baikal Rift Zone and Plate Tectonics of Asia,” Tectonophysics 76, 1–45 (1981).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Marine Geology and Geophysics, Far East BranchRussian Academy of SciencesYuzhno-SakhalinskRussia

Personalised recommendations