Russian Journal of Pacific Geology

, Volume 4, Issue 1, pp 13–40 | Cite as

Geochemical evolution of Middle—Late Cenozoic magmatism in the northern part of the Rio Grande Rift, Western United States

  • S. V. RasskazovEmail author
  • T. A. Yasnygina
  • N. N. Fefelov
  • E. V. Saranina


Geochemical studies of the Middle—Late Cenozoic succession of volcanic rocks from the northern part of the Rio Grande Rift were conducted. The initial activation of the rift structure was coeval with voluminous eruptions of lava and pyroclastic material of mainly intermediate and acid compositions in the San Juan volcanic field 35–27 Ma. The composition of the volcanic products after the rifting was dominated by basic and intermediate lavas. It is shown that the basanites and alkali basalts of the territory had geochemical characteristics of sublithospheric slab and above–sl ab sources. The processes of the riftogenic thinning of lithosphere are expressed by geochemical parameters that reflect the interaction between the liquids from the sublithospheric mantle and the rocks from different levels of both the lithospheric mantle and lower crust. In the 35–18 Ma interval, melts of different–depth sublithospheric and lithospheric sources erupted simultaneously in the northern part of the rift. However, the products of interaction between the sublithospheric and lithospheric materials dominated later in the past 15 Ma, although the sublithospheric magmatic liquids erupted at the northern structural termination of the rift within the Yampa volcanic field at about 10 Ma.

Key words

Cenozoic continental margin rifting subduction basalts basanites trachyandesites trace elements Sr isotopes Rio Grande North America 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. D. Andreeva, V. A. Baskina, O. A. Bogatikov, et al., Magmatic Rocks (Nauka, Moscow, 1985) [in Russian].Google Scholar
  2. 2.
    V. E Afonin, N. I. Komyak, V. E Nikolaev, and R. I. Plotnikov, X-Ray Fluorescence Analysis (Nauka, Novosibirsk, 1991) [in Russian].Google Scholar
  3. 3.
    L. P. Zonenshain, M. I. Kuzmin, and V. M. Moralev, “Global Tectonics,” in Magmatism and Metallogeny (Nedra, Moscow, 1976) [in Russian].Google Scholar
  4. 4.
    E. E. Milanovskii, “Rio-Grande Rift Zone in North America and its Tectonic Position,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 57(4), 3–17 (1982).Google Scholar
  5. 5.
    A. Miyashiro, K. Aki, and A. Sengor, Orogenesis (Wiley, Chichester, 1982; Mir, Moscow, 1985).Google Scholar
  6. 6.
    S. V. Rasskazov, Magmatism of the Baikal Rift System (Nauka, Novosibirsk, 1993) [in Russian].Google Scholar
  7. 7.
    S. V. Rasskazov, S. B. Brandt, I. S. Brandt, et al., Radioisotope Geology in Tasks and Examples (SO RAN, Fil. TGeoU, Novosibirsk, 2005) [in Russian].Google Scholar
  8. 8.
    S. V. Rasskazov, I. S. Chuvashova, T. A. Yasnygina, et al., “Slab and Supraslab Late Cenozoic Melts at Convergent Boundaries between Asia and Eastern Khangai, Central Mongolia,” Izv. Irkut. Gos. Univ, Ser. NaukZemle, No. 1, 43–67 (2008).Google Scholar
  9. 9.
    U. Achauer and F. Masson, “Seismic Tomography of Continental Rifts Revised: from Relative to Absolute Heterogeneities,” Tectonophysics 358, 17–37 (2002).CrossRefGoogle Scholar
  10. 10.
    M. J. Aldrich and A. W. Laughlin, “A Model for the Tectonic Development of the Southeastern Colorado Plateau Boundary,” J. Geophys. Res. 89, 10207–10218 (1984).CrossRefGoogle Scholar
  11. 11.
    M. J. Aldrich and D. P. Deither, “Stratigraphic and Tectonic Evolution of the Northern Espanola Basin, Rio Grande Rift, New Mexico,” Geol. Soc. Am. Bull. 102, 1695–1705 (1990).CrossRefGoogle Scholar
  12. 12.
    Y. Asmerom, “Th-U Fractionation and Mantle Structure,” Earth Planet Sci. Lett. 166, 163–175 (1999).CrossRefGoogle Scholar
  13. 13.
    T. Atwater, “Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North America,” Geol. Soc. Am. Bull. 81, 3513–3536 (1970).CrossRefGoogle Scholar
  14. 14.
    G. J. Axen, W. J. Taylor, and J. M. Bartley, “Space- Time Fatterns and Tectonic Controls of Tertiary Extension and Magmatism in the Great Basin of the Western United States,” Geol. Soc. Am. Bull. 105, 56–76 (1993).CrossRefGoogle Scholar
  15. 15.
    W. S. Baldridge, P. E. Damon, M. Shafiqullah, and R J. Bridwell, “Evolution of the Central Rio Grande Rift, New Mexico: New K-Ar Ages,” Earth Planet Sci. Lett. 51, 309–321 (1980).CrossRefGoogle Scholar
  16. 16.
    P. Bird, “Stress Direction History of the Western United States and Mexico Since 85 Ma,” Tectonics 21(3), 129 (2002).CrossRefGoogle Scholar
  17. 17.
    J. D. Blundy, J. A. C. Robinson, and B. J. Wood, “Heavy REE Are Compatible in Clinopyroxene on the Spinel Lherzolite Solidus,” Earth Planet Sci. Lett. 160, 493–504 (1998).CrossRefGoogle Scholar
  18. 18.
    T. K. Bradshaw, C. J. Hawkesworth, and K. Gallagher, “Basaltic Volcanism in the Southern Basin and Range: No Role for a Mantle Plume,” Earth Planet. Sci. Lett. 116, 45–62 (1993).CrossRefGoogle Scholar
  19. 19.
    R. G. Bohannon and T. Parsons, “Tectonic Implications of Post-30-Ma Pacific and North American Relative Plate Motions,” Geol. Soc. Am. Bull. 107(8), 937–959 (1995).CrossRefGoogle Scholar
  20. 20.
    C. E. Chapin, “Evolution of the Rio Grande Rift-a Summary,” in Rio Grande Rift: Tectonics and Magmatism (American Geophysical Union, Washington, DC, 1979), pp. 1–5.Google Scholar
  21. 21.
    W. Chen and R. J. Arculus, “Geochemical and Isotopic Characteristics of Lower Crustal Xenoliths, San Francisco Volcanic Field, Arizona, USA,” Lithos, 36, 203–225 (1995).CrossRefGoogle Scholar
  22. 22.
    E. H. Christiansen and M. McCurry, “Contrasting Origins of Cenozoic Silicic “Volcanic Rocks from the Western Cordillera of the United States,” Bull. Volcanol. 70, 251–267 (2008).CrossRefGoogle Scholar
  23. 23.
    R. L. Christiansen and P. W. Lipman, “Cenozoic “Volcanism and Plate-Tectonic Evolution of the Western United States. II. Late Cenozoic,” Philos. Trans. R. Soc. London A 271, 249–284 (1972).CrossRefGoogle Scholar
  24. 24.
    M. T. Colucchi, M. A. Dungan, K. M. Ferguson, et al., “Precaldera Lavas of the Southeast San Juan Volcanic Field-Parent Magmas and Crustal Interactions,” J. Geophys. Res. Solid Earth Planet. 96((B8)), 13413–13434 (1991).CrossRefGoogle Scholar
  25. 25.
    P. J. Coney and S. J. Reynolds, “Cordilleras Benioff Zones,” Nature 270, 404–406 (1977).CrossRefGoogle Scholar
  26. 26.
    P. M. Davis, P. Slack, H. A. Dahlheim, et al., “Teleseismic Tomography of Continental Rift Zones,” in Seismic Tomography: Theory and Practice (Charman and Hall, London, 1993), pp. 397–439.Google Scholar
  27. 27.
    W. R. Dickinson, “The Basin and Range Province As a Composite Extensional Domain,” Int. Geol. Rev. 44, 1–38 (2002).CrossRefGoogle Scholar
  28. 28.
    K. E. Duncker, J. A. Wolff, R. S. Harmon, et al., “Diverse Mantle and Crustal Components in Lavas of the NW Cerros Del Rio Volcanic Field, Rio Grande Rift, New Mexico,” Contrib. Mineral. Petrol. 108, 331–345 (1991).CrossRefGoogle Scholar
  29. 29.
    M. A. Dungan, M. M. Lindstrom, N. J. McMillan, etal., “Open System Magmatic Evolution of the Taos Plateau Volcanic Field, Northern New Mexico. 1. The Petrology and Geochemistry of the Servilleta Basalt,” J. Geophys. Res. 91B, 5999–6028 (1986).CrossRefGoogle Scholar
  30. 30.
    M. A. Dungan, R. A. Thompson, J. S. Stormer, and J. M. Neill, “Rio Grande Rift Volcanism: Northeastern Jemez Zone, New Mexico,” in Field Excursions to Volcanic Terranes in the Western United States. V. 1. Southern Rocky Mountain Region (New Mexico Bureau of Nines&Mineral Resources, Socorro, 1989), pp. 435–486.Google Scholar
  31. 31.
    G. L. Famer, T. Bailey, and L. E. Elkins-Tanton, “Mantle Source “Volumes and the Origin of the Mid-Tertiary Ignimbrite Flare-Up in the Rocky Mountains, Western U.S,” Lithos 102, 279–294 (2008).CrossRefGoogle Scholar
  32. 32.
    G. Faure, Origin of Igneous Rocks: the Isotopic Evidence (Springer, 2001).Google Scholar
  33. 33.
    S. F. Foley, S. E. Jackson, B. J. Fryer, et al., “Trace Element Partition Coefficients for Clinopyroxene and Phl- ogopite in An Alkaline Lamprophyre from Newfoundland by LAM-ICP-MS,” Geochim. Cosmochim. Acta 60, 629–638 (1996).CrossRefGoogle Scholar
  34. 34.
    W. Gao, S. P. Grand, W. S. Baldridge, et al., “Upper Mantle Convection Beneath the Central Rio Grande Rift Imaged by P and S Wave Tomography,” J. Geophys. Res. 109 (2004).Google Scholar
  35. 35.
    S. A. Gibson, R. N. Thompson, P. T. Leat, et al., “Asthenosphere-Derived Magmatism in the Rio Grande Rift, Western USA: Implications for Continental Break-Up,” in Magmatism and the Causes of Continental Break-Up, Geol. Soc. Spec. Publ. 68, 61–89 (1992).Google Scholar
  36. 36.
    S. A. Gibson, R. N. Thompson, P. T. Leat, et al., “Ultrapotassic Magmas Along the Flanks of the Oligo-Miocene Rio Grande Rift, USA: Monitors of the Zone of Lithospheric Mantle Extension and Thinning Beneath a Continental Rift,” J. Petrol. 34, 187–228 (1993).Google Scholar
  37. 37.
    A. N. Halliday, C.-C. Lee, S. Tommasini, et al., “Incompatible Trace Elements in OIB and MORB and Source Enrichment in the Sub-Oceanic Mantle,” Earth Planet. Sci. Lett. 113, 379–395 (1995).CrossRefGoogle Scholar
  38. 38.
    S. R. Hart and T. Dunn, “Experimental Cpx/Melt Partitioning of 24 Trace Elements,” Contrib. Miner. Petrol. 113, 1–8 (1993).CrossRefGoogle Scholar
  39. 39.
    E. H. Hauri, T. P. Wagner, and T. L. Grove, “Experimental and Natural Partitioning of Th, U, Pb and Other Trace Elements Between Garnet, Clinopyroxene and Basaltic Melts,” Chem. Geol. 117, 149–166 (1994).CrossRefGoogle Scholar
  40. 40.
    C. J. Hawkesworth, S. Turner, K. Gallagher, et al., “Cale-Alkaline Magmatism, Lithospheric Thinning and Extension in the Basin and Range,” J. Geophys. Res. 100B, 10271–10286 (1995).CrossRefGoogle Scholar
  41. 41.
    D. A. Ionov, W. L. Griffin, and S. Y. Reilly, “Volatile-Bearing Minerals and Lithophile Trace Elements in the Upper Mantle,” Chem. Geol. 141, 153–184 (1997).CrossRefGoogle Scholar
  42. 42.
    P. D. Kempton, M. A. Dungan, and D. P. Blanchard, “Petrology and Geochemistry of Xenolith-Bearing Alkalic Basalts from the Geronimo Volcanic Field Southeast Arisona. Evidence for Polybaric Fraction- ation and Implications for Mantle Heterogeneity,” Spec. Pap. Geol. Soc. Am. 215, 347–370 (1987).Google Scholar
  43. 43.
    T. LaTourrette, R. J. Hervig, and J. R. Holloway, “Trace Element Partitioning Between Amphibole, Phlogopite and Basanite Melt,” Geotektonika 135, 13–30 (1995).Google Scholar
  44. 44.
    P. T. Leat, R. N. Thompson, M. A. Morrison, et al., “Compositionally Diverse Miocene-Recent Rift- Related Magmatism in Northwestern Colorado: Partial Melting and Mixing of Vafic Magmas from 3 Different Asthenospheric and Lithospheric Mantle Sources,” J. Petrol. Spec. Lithosph. Is., 351–377. (1988).Google Scholar
  45. 45.
    P. T. Leat, R. N. Thompson, M. A. Morrison, et al., “Alkaline Hybrid Mafic Magmas of the Yampa Area, NW Colorado, and Their Relationship to the Yellowstone Mantle Plume and Lithospheric Mantle Domains,” Contrib. Miner. Petr 107, 310–327 (1991).CrossRefGoogle Scholar
  46. 46.
    M. J. Le Bas and A. L. Streskeisen, “The IUGS Systematics of Igneous Rocks,” J. Geol. Soc. London 148, 825–833 (1991).CrossRefGoogle Scholar
  47. 47.
    P. W. Lipman, “Alkalic and Tholeiitic Basaltic “Volcanism Related to the Rio Grande Depression, Southern Colorado and Northern New Mexico,” Geol. Soc. Am. Bull. 80, 1343–1343 (1969).CrossRefGoogle Scholar
  48. 48.
    P. W. Lipman, “Geologic Map of the Lower Conejos River Canyon Area, Southeastern San Juan Mountains, Colorado,” U. S. Geol. Surv. Map 1–901 (1975).Google Scholar
  49. 49.
    P. W. Lipman, T. A. Stewen, and H. H. Mehnert, “Volcanic History of the San Juan Mountains, Colorado, As Indicated by K-Ar Dating,” Geol. Soc. Am. Bull. 81, 2329–2352 (1970).CrossRefGoogle Scholar
  50. 50.
    P. W. Lipman and H. H. Mehnert, “Late Cenozoic Basaltic Volcanism and Development of the Rio Grande Depression in the Southern Rocky Mountains,” Geol. Soc. Am. Mem. 144, 119–154 (1975).Google Scholar
  51. 51.
    P. W. Lipman, B. R. Doe, C. E. Hedge, and T. A. Steven, “Petrologic Evolution of the San Juan “Volcanic Field, Southwestern Colorado: Pb and Sr Isotope Evidence,” Geol. Soc. Am. Bull. 89, 59–82 (1978).CrossRefGoogle Scholar
  52. 52.
    P. W. Lipman and H. H. Mehnert, “The Taos Plateau Volcanic Field, Northern Rio Grande Rift, New Mexico,” in Rio Grande Rift—Tectonics and Magmatism (Amer. Geophys. Union, Washington D.C, 1979), pp. 218–312.Google Scholar
  53. 53.
    P. W. Lipman, “Cenozoic Volcanism in the Western United Stated: Implications for Continental Tectonics,” in Continental Tectonics (National Academy of Sciences, Washington, DC, 1980), pp. 161–174.Google Scholar
  54. 54.
    P. W. Lipman, H. H. Mehnert, and C. W. Naeser, “Evolution of the Latir “Volcanic Field, Northern New Mexico, and Its Relation to the Rio Grande Rift, As Indicated by Potassium-Argon and Fission Track Dating,” J. Geophys. Res. 91B, 6329–6345 (1986).CrossRefGoogle Scholar
  55. 55.
    P. W. Lipman, “Incremental Assembly and Prolonged Consolidation of Cordilleran Magma Chambers: Evidence from the Southern Rocky Mountain Volcanic Field,” Geosphere 3, 42–70 (2007).CrossRefGoogle Scholar
  56. 56.
    K. Manley, G. R. Scott, and R. A. Wobus, Geological Map of the Aztec 1° × 2° Quadrangle, Northwestern New Mexico and Southern Colorado, US Geol. Surv. (1987).Google Scholar
  57. 57.
    C. N. Maxwell, Geological Map of the El Malpais Lava Field and Surrounding Areas, Cibola Country, New Mexico (US Dep. Inter., Washington, DC, 1986).Google Scholar
  58. 58.
    W. F. McDonough and S.-S. Sun, “The Composition of the Earth,” Chem. Geol. 120, 223–253 (1995).CrossRefGoogle Scholar
  59. 59.
    N. J. McMillan and M. A. Dungan, “Open System Magmatic Evolution of the Taos Plateau Volcanic Field, Northern New Mexico: Andesites and Dacites,” J. Petrol. 29, 527–557 (1988).Google Scholar
  60. 60.
    N. J. McMillan, A. P. Dickin, and D. Haag, “Evolution of Magma Source Regions in the Rio Grander Rift, Southern New Mexico,” Geology 112, 1582–1593 (2000).Google Scholar
  61. 61.
    M. A. Menzies, W. P. Leeman, and C. J. Hawkesworth, “Isotope Geochemistry of Cenozoic Volcanic Rocks Reveals Mantle Heterogeneity Below Western USA,” Nature 303, 205–209 (1983).CrossRefGoogle Scholar
  62. 62.
    M. A. Menzies, P. R. Kyle, M. Jones, and G. Ingram, “Enriched and Depleted Source Components for Tholeiitic and Alkaline Lavas from Zuni-Bandera, New Mexico: Inferences About Intraplate Processes and Stratified Lithosphere,” J. Geophys. Res. 96B, 13645–13671 (1991).CrossRefGoogle Scholar
  63. 63.
    J. Ohki, N. Watanabe, K. Shuto, and T. Itaya, “Shifting of the Volcanic Fronts During Early To Late Miocene in the Northeast Japan Arc,” The Island Arc 2, 87–93 (1993).CrossRefGoogle Scholar
  64. 64.
    D. S. Ormerod, C. J. Hawkesworth, N. W. Rogers, et al., “Tectonic and Magmatic Transitions in the Western Great Basin, USA,” Nature 333, 349–353 (1988).CrossRefGoogle Scholar
  65. 65.
    M. Ozima, M. Kono, I. Kaneoka, et al., “Paleomagnetism and K-Ar Ages of Some “Volcanic Rocks from the Rio Grande Gorge, New Mexico,” J. Geophys. Res. 72, 2615–2621 (1967).CrossRefGoogle Scholar
  66. 66.
    E. C. Parker, P. M. Davis, J. R. Evans, et al. “Upwarp of Anomalous Lithosphere Beneath the Rio Grande Rift,” Nature 312, 354–356 (1984).CrossRefGoogle Scholar
  67. 67.
    D. F. Parker, A. Ghosh, C. W. Price, et al., “Origin of Rhyolite by Crustal Melting and the Nature of Parental Magmas in the Oligocene Cenejos Formation, San Juan Mountains, Colorado, USA,” J. “Vblcanol. Geotherm. Res. 139, 185–210 (2005).CrossRefGoogle Scholar
  68. 68.
    F. V. Perry, W. S. Baldridge, and D. J. DePaolo, “Chemical and Isotopic Evidence for Lithospheric Thinning Beneath the Rio Grande Rift,” Nature 332, 432–434 (1988).CrossRefGoogle Scholar
  69. 69.
    F. V. Perry, D. J. DePaolo, and W. S. Baldridge, “Neodymium Isotopic Evidence for Decreasing Crustal Contribution to Cenozoic Ignimbrites of the Western United States: Implications for the Thermal Evolution of the Cordilleran Crust,” Geol. Soc. Am. Bull. 105, 872–882 (1993).CrossRefGoogle Scholar
  70. 70.
    N. W. Rogers, C. J. Hawkesworth, and D. S. Ormerod, “Late Cenozoic Basaltic Magmatism in the Western Great Basin, California and Nevada,” J. Geophys. Res. 100B(7), 10287–10301 (1995).CrossRefGoogle Scholar
  71. 71.
    W. R. Seager, M. Shafiqullah, J. W. Hawley, and R. F. Marvin, “New K-Ar Dates from Basalts of the Southern Rio Grande Rift,” Geol. Soc. Am. Bull. 95, 87–99 (1984).CrossRefGoogle Scholar
  72. 72.
    K. Shuto, J. Ohki, H. Kagami, et al., “The Relationships between Drastic Changes in Sr Isotope Ratios of Magma Sources beneath the NF Japan Arc and Spreading of the Japan Sea Back-Arc Basin,” Mineral. Petrol. 49, 71–90 (1993).CrossRefGoogle Scholar
  73. 73.
    J. E. Spencer and S. J. Reynolds, “Middle Tertiary Tectonics of Arizona and Adjacent Areas,” in Geologic Evolution of Arizona, Ed. By J. P. Jenney and S. J. Reynolds (Arizona Geol. Soc, Digest, 1989), pp. 539–574.Google Scholar
  74. 74.
    S.-S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Magmatism in the Ocean Basins,” Geol. Soc. Spec. Publ., No. 42, 313–345 (1989).CrossRefGoogle Scholar
  75. 75.
    Y. Tatsumi, D. I. Hamilton, and R. W. Nesbitt, “Chemical Characteristics of Fluid Phase Released from a Subducted Lithosphere and Origin of Arc Magmas: Evidence from High Pressure Experiments and Natural Rocks,” J. Volcanol. Geotherm. Res. 29, 293–309 (1986).CrossRefGoogle Scholar
  76. 76.
    Y. Tatsumi, “Migration of Fluid Phases and Generation of Basalt Magmas in Subduction Zones,” J. Geophys. Res. 94(B4), 4697–4704 (1989).CrossRefGoogle Scholar
  77. 77.
    R. Thompson, M. A. Dungan, and P. W. Lipman, “Multiple Differentiation Processes in Early-Rift Calc-Alkaline Volcanics, Northern Rio Grande Rift, New Mexico,” J. Geophys. Res. 91B, 6046–6058 (1986).CrossRefGoogle Scholar
  78. 78.
    R. N. Thompson and S. A. Gibson, “Magmatic Expression F Lithospheric Thinning across Continental Rifts,” Tectonophysics 233, 41–68 (1993).CrossRefGoogle Scholar
  79. 79.
    P. E. Van Keken, B. Kiefer, and S. M. Peacock, “High-Resolution Models of Subduction Zones: Implications for Mineral Dehydration Reactions and the Transport of Water Into Deep Mantle,” Geochem., Geophys., Geosyst. 3(10), 1056 (2002).CrossRefGoogle Scholar
  80. 80.
    T. F. Wawrzyniec, J. W. Geissman, M. D. Melker, and M. Hubbard, “Dextral Shear Along the Eastern Margin of the Colorado Plateau: a Kinematic Link Between Laramide Contraction and Rio Grande Rifting (Ca. 75-13 Ma),” J. Geol. 110, 305–324 (2002).CrossRefGoogle Scholar
  81. 81.
    M. West, J. Ni, W. S. Baldridge, D. Wilson, et al., “Crust and Upper Mantle Shear Wave Structure of the Southwestern United States: Implications for Rifting and Support for High Elevation,” J. Geophys. Res. 109, B03309 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. V. Rasskazov
    • 1
    Email author
  • T. A. Yasnygina
    • 1
  • N. N. Fefelov
    • 1
  • E. V. Saranina
    • 1
  1. 1.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations