Advertisement

Neurochemical Journal

, Volume 12, Issue 4, pp 288–294 | Cite as

Dopamine Synthesis by Non-Dopaminergic Neurons as an Effective Mechanism of Neuroplasticity

  • M. V. UgryumovEmail author
Review Articles
  • 7 Downloads

Abstract

In addition to dopaminergic (DAergic) neurons, which possess all of the enzymes of dopamine synthesis (DA), there are neurons that express only one of the enzymes, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AAAD). These so-called monoenzymatic neurons are widely distributed in the brain and, in some areas, are even more numerous than dopaminergic (DAergic) neurons. Using in an vitro experimental approach that we developed it was first demonstrated that monoenzymatic neurons that contain complementary enzymes of DA synthesis, TH and AAAD, co-synthesize DA. L-3,4-dihydroxyphenylalanine (L-DOPA), which is synthesized from L-tyrosine in monoenzymatic TH-containing neurons, is transferred to monoenzymatic AAAD-containing neurons, where L-DOPA is converted to DA. We have also shown that cooperative synthesis of DA, although performed in some parts of the brain in the norm, is predominantly a manifestation of neuroplasticity in pathology. This additional source of DA synthesis contributes to compensation of the DA deficit, which occurs in neurodegenerative diseases such as hyperprolactinemia and Parkinson’s disease, whose pathogenesis is associated with degeneration of dopaminergic (DAergic) neurons. It is also possible that L-DOPA, which is secreted by monoenzymatic TH-containing neurons, plays the role of a neurotransmitter or neuromodulator and acts on target neurons through receptors to L-DOPA, DA, and norepinephrine. Thus, numerous non-dopaminergic monoenzymatic neurons, which are widely distributed in the brain, jointly synthesize DA, which is the most important mechanism of neuroplasticity; this compensates for the DA deficit during the degeneration of DAergic neurons.

Keywords

dopamine monoenzymatic neurons tyrosine hydroxylase decarboxylase of aromatic L-amino acids mediobasal hypothalamus nigrostriatal system neurodegenerative diseases 

Abbreviations

VMAT2

vesicular monoamine transporter 2

DA

dopamine

DA-ergic

dopaminergic

AAAD

aromatic L-amino acid decarboxylase

L-DOPA

L-3,4-dihydroxyphenylalanin

TH

tyrosine hydroxylase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turpaev, T.M., Mediatornaya funktsiya atsetilkholina i priroda kholinoretseptora (Mediator Function of Acetylcholine and Nature of Cholinoreceptor), Moscow: AN SSSR, 1962.Google Scholar
  2. 2.
    Koshtojanz, Ch.S. and Turpaev, T.M., Nature, 1946, vol. 158, pp. 837–838.CrossRefGoogle Scholar
  3. 3.
    Björklund, A. and Lindvall, O., The Handbook of Chemical Neuroanatomy, Amsterdam: Elsevier, 1984, part 1, vol. 2, pp. 55–122.Google Scholar
  4. 4.
    Girault, J.A. and Greengard, P., Arch. Neurol., 2004, vol. 61, pp. 641–644.CrossRefGoogle Scholar
  5. 5.
    Hökfelt, T., Johansson, O., and Goldstein, M., The handbook of chemical neuroanatomy, Amsterdam: Elsevier, 1984, part 1, vol. 2, pp. 157–276.Google Scholar
  6. 6.
    Hoffman, B.J., Hansson, S.R., Mezey, E., and Palkovits, M., Front. Neuroendocrinol., 1998, vol. 19, pp. 187–231.CrossRefGoogle Scholar
  7. 7.
    Weihe, E. Depboylu, C., Schütz, B., Schäfer, M.K., and Eiden, L.E., Cell Mol. Neurobiol., 2006, vol. 26, pp. 659–678.CrossRefGoogle Scholar
  8. 8.
    Dahlstrom, A. and Fuxe, K., Acta Physiol. Scand., 1964, vol. 62, (Suppl. 232), pp. 1–55.Google Scholar
  9. 9.
    Palkovits, M. and Brownstein, M.J., Handbook of Chemical Neuroanatomy, Berlin: Springer, 1989, vol. 90/2, pp. 1–26.Google Scholar
  10. 10.
    Okamura, H., Kitahama, K., Nagatsu, I., and Geffard, M., Neurosci. Lett., 1988, vol. 95, pp. 347–353.CrossRefGoogle Scholar
  11. 11.
    Meister, B.L., Hökfelt, T., Steinbusch, H.W., Skagerberg, G., Lindvall, O., Geffard, M., Joh, T.H., Cuello, A.C., and Goldstein, M., J. Chem. Neuroanat., 1988, vol. 1, pp. 59–64.Google Scholar
  12. 12.
    Okamura, H., Kitahama, K., Raynaud, B., Nagatsu, I., Borri-Volttatorni, C., and Weber, M., Biomed. Res., 1988, vol. 9, pp. 261–267.CrossRefGoogle Scholar
  13. 13.
    Ugrumov, M.V., Adv. Pharmacol., 2013, vol. 68, pp. 37–91.CrossRefGoogle Scholar
  14. 14.
    Zoli, M., Agnati, L.F., Tinner, B., Steinbusch, H., and Fuxe, K., J. Chem. Neuroanat., 1993, vol. 6, pp. 293–310.CrossRefGoogle Scholar
  15. 15.
    Ershov, P.V., Ugrumov, M.V., Calas, A., Krieger, M., and Thibault, J., J. Comp. Neurol., 2002, vol. 446, pp. 114–122.CrossRefGoogle Scholar
  16. 16.
    Kitahama, K., Ikemoto, K., Jouvet, A., Nagatsu, I., Sakamoto, N., and Pearson, J., J. Chem. Neuroanat., 1998, vol. 16, pp. 43–55.CrossRefGoogle Scholar
  17. 17.
    Ershov, P.V., Ugrumov, M.V., Calas, A., Krieger, M., and Thibault, J., J. Chem. Neuroanat., 2005, vol. 30, pp. 27–33.CrossRefGoogle Scholar
  18. 18.
    Ugrumov, M.V., Taxi, J., Pronina, T., Kurina, A., Sorokin, A., Sapronova, A., and Calas, A., Neuroscience, 2014, vol. 277, pp. 45–54.CrossRefGoogle Scholar
  19. 19.
    Abramova, M., Marsais, F., Calas, A., Thibault, J., and Ugrumov, M., Brain Res., 2002, vol. 925, pp. 67–75.CrossRefGoogle Scholar
  20. 20.
    Marsais, F., Parmentier, C., Terao, E., Taxi, J., and Calas, A., Microsc. Res. Tec., 2002, vol. 56, pp. 81–91.CrossRefGoogle Scholar
  21. 21.
    Ugrumov, M.V., J. Chem. Neuroanat., 2009, vol. 38, pp. 241–256.CrossRefGoogle Scholar
  22. 22.
    Betarbet, R., Turner, R., Chockkan, V., DeLong, M.R., Allers, K.A., Walters, J., Levey, A.I., and Greenamyre, J.T., J. Comp. Neurol., 1997, vol. 17, pp. 6761–6768.Google Scholar
  23. 23.
    Tashiro, Y., Kaneko, T., Sugimoto, T., Nagatsu, I., Kikuchi, H., and Mizuno, N., Neurosci. Lett., 1989, vol. 100, pp. 29–34.CrossRefGoogle Scholar
  24. 24.
    Tashiro, Y.L., Sugimoto, T., Hattori, T., Uemura, Y., Nagatsu, I., Kikuchi, H., and Mizuno, N., Neurosci. Lett., 1989, vol. 97, pp. 6–10.CrossRefGoogle Scholar
  25. 25.
    Lopez-Real, A., Rodriguez-Pallares, J., Guerra, M.J., and Labandeira-Garcia, J.L., Brain Res., 2003, vol. 969, pp. 135–146.CrossRefGoogle Scholar
  26. 26.
    Tandé, D., Höglinger, G., Debeir, T., Freundlieb, N., Hirsch, E.C., and Françis, C., Brain, 2006, vol. 129, pp. 1194–2000.CrossRefGoogle Scholar
  27. 27.
    Cossette, M., Lecomte, F., and Parent, A., J. Chem. Neuroanat., 2005, vol. 29, pp. 1–11.CrossRefGoogle Scholar
  28. 28.
    Dubach, M., Schmidt, R., Kunkel, D., Bowden, D.M., Martin, R., and German, D.C., Neurosci. Lett., 1987, vol. 75, pp. 205–210.CrossRefGoogle Scholar
  29. 29.
    Cossette, M., Parent, A., and Lévesque, D., Eur. J. Comp. Neurol., 2004, vol. 20, pp. 2089–2095.Google Scholar
  30. 30.
    Huot, P., Lévesque, M., and Parent, A., Brain, 2007, vol. 130, pp. 222–232.CrossRefGoogle Scholar
  31. 31.
    Ikemoto, K.L., Kitahama, K., Jouvet, A., Arai, R., Nishimura, A., Nishi, K., Nagatsu, I., Neurosci. Lett., 1997, vol. 232, pp. 111–114.CrossRefGoogle Scholar
  32. 32.
    Okamura, H., Kitahama, K., Mons, N., Ibata, Y., Jouvet, M., and Geffard, M., Neurosci. Lett., 1988, vol. 95, pp. 42–46.CrossRefGoogle Scholar
  33. 33.
    Mons, N., Tison, F., and Geffard, M., Synapse, 1989, vol. 4, pp. 99–105.CrossRefGoogle Scholar
  34. 34.
    Melnikova, V.L., Orosco, N., Calas, A., Sapronova, A., Gainetdinov, R., Delhaye-Bouchaud, N., Nicolaidis, S., Rayevsky, K., and Ugrumov, M., Neuroscience, 1999, vol. 89, pp. 235–241.CrossRefGoogle Scholar
  35. 35.
    Fisher, A., Biggs, C.S., Eradiri, O., and Starr, M.S., Neuroscience, 2000, vol. 95, pp. 97–111.CrossRefGoogle Scholar
  36. 36.
    Misu, Y., Kitahama, K., and Goshima, Y., Pharmacol. Therapeut., 2003, vol. 97, pp. 117–137.CrossRefGoogle Scholar
  37. 37.
    Battaglia, A.A., Beltramo, M., Thibault, J., Krieger, M., and Calas, A., Brain Res., 1995, vol. 696, pp. 7–14.CrossRefGoogle Scholar
  38. 38.
    Everitt, B., Meister, B., Hkfelt, T., Melander, T., Terenins, L., Rokaeus, A., Theodorsson-Norheim, E., Dockray, G., Edwardson, J., Cuello, C., Elde, R., Goldstein, M., Hemmings, H., Ouimet, C., Walaas, I., Greengard, P., Vale, W., Weber, E., Wu, J., and Chang, K., Brain Res., 1986, vol. 396, pp. 97–155.CrossRefGoogle Scholar
  39. 39.
    Karasawa, N., Arai, R., Isomura, G., Nagatsu, T., and Nagatsu, I., Brain Res. Dev. Brain Res., 1997, vol. 99, pp. 121–125.CrossRefGoogle Scholar
  40. 40.
    Okamura, H., Murakami, S., Chihara, K., Nagatsu, K., and Ibata, Y., Neuroendocrinology, 1985, vol. 41, pp. 177–179.CrossRefGoogle Scholar
  41. 41.
    Tinner, B.L., Fuxe, K., Köhler, C., Hersh, l., Andersson, K., Jansson, A., Goldstein, M., and Agnati, l.F., Neurosci. Let., 1989, vol. 99, pp. 44–49.CrossRefGoogle Scholar
  42. 42.
    Verney, C., Gaspar, P., Febvret, A., and Berger, B., Brain Res., 1988, vol. 470, pp. 45–58.CrossRefGoogle Scholar
  43. 43.
    Verney, C., el Amraoui, A., and Zecevic, N., Brain Res. Dev. Brain Res., 1996, vol. 97, pp. 251–259.CrossRefGoogle Scholar
  44. 44.
    Izvolskaia, M., Duittoz, A.H., Ugrumov, M., and Tillet, Y., Brain Res., 2006, vol. 1083, pp. 29–38.CrossRefGoogle Scholar
  45. 45.
    Ishida, Y.L., Yokoyama, C., Inatomi, T., Yagita, K., Dong, X., Yan, l., Yamaguchi, S., Nagatsu, I., Komori, T., Kitahama, K., and Okamura, H., Genes Cells, 2002, vol. 7, pp. 447–459.CrossRefGoogle Scholar
  46. 46.
    Karasawa, N.L., Arai, R., Isomura, G., Yamada, K., Sakai, K., Sakai, M., Nagatsu, T., and Nagatsu, I., Neurosci. Lett., 1994, vol. 179, pp. 65–70.CrossRefGoogle Scholar
  47. 47.
    Fernández, E., Torrents, D., Zorzano, A., Palacín, M., and Chillaron, J., J. Biol. Chem., 2005, vol. 280, pp. 19364–19372.CrossRefGoogle Scholar
  48. 48.
    Jaeger, C.B., Ruggiero, D.A., Albert, V.R., Park, D.H., Joh, T.H., and Reis, D.J., The Handbook of Chemical Neuroanatomy, Amsterdam: Elsevier, 1984, vol. 2, pp. 387–408Google Scholar
  49. 49.
    Jaeger, C.B., Albert, V.R., Joh, T.H., and Reis, D.J., Brain Res., 1983, vol. 276, pp. 362–366.CrossRefGoogle Scholar
  50. 50.
    Ugrumov, M.V., Handbook of Neurochemistry and Molecular Neurobiology, Boston: Springer, 2008, 3rd ed., pp. 21–73.CrossRefGoogle Scholar
  51. 51.
    Schneider, J.S., Rothblat, D.S., and DiStefano, L., Brain Res., 1994, vol. 643, pp. 86–91.CrossRefGoogle Scholar
  52. 52.
    Balan, I.S., Ugrumov, M.V., Calas, A., Mailly, P., Krieger, M., and Thibault, J., J. Comp. Neurol., 2000, vol. 425, pp. 167–176.CrossRefGoogle Scholar
  53. 53.
    Ugrumov, M.V., Melnikova, V.I., Lavrentyeva, A.V., Kudrin, V.S., and Rayevsky, K.S., Neuroscience, 2004, vol. 124, pp. 629–635.CrossRefGoogle Scholar
  54. 54.
    Arai, R., Karasawa, N., Geffard, M., and Nagatsu, I., Neurosci. Lett., 1995, vol. 195, pp. 195–198.CrossRefGoogle Scholar
  55. 55.
    Hayashi, M., Yamaji, Y., Kitajima, W., and Saruta, T., Am. J. Physiol., 1990, vol. 258, no. 1, part 2, pp. 28–33.Google Scholar
  56. 56.
    Meister, B., Fried, G., Holgert, H., Aperia, A., and Hokfelt, T., Kidney Int., vol. 42, pp. 617–623.Google Scholar
  57. 57.
    Kozina, E.A., Kim, A.R., Kurina, A.Y., and Ugrumov, M.V., Neurobiol. D., vol. 98, no. is. 2017, pp. 108–121.CrossRefGoogle Scholar
  58. 58.
    Ugrumov, M.V., Khaindrava, V.G., Kozina, E.A., Kucheryanu, V.G., Bocharov, E.V., Kryzhanovsky, G.N., Kudrin, V.S., Narkevich, V.B., Klodt, P.M., Rayevsky, K.S., and Pronina, T.S., Neuroscience, 2011, vol. 181, pp. 175–188.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kol’tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  2. 2.MoscowRussia

Personalised recommendations