Neurochemical Journal

, Volume 12, Issue 4, pp 299–304 | Cite as

Interaction between Hydrogen Sulfide and Muscarinic Receptors in the Regulation of Contractility of the Mouse Atrium

  • A. S. Blokhina
  • N. N. Khaertdinov
  • A. L. Zefirov
  • G. F. SitdikovaEmail author
Experimental Articles


Hydrogen sulfide (H2S) is an endogenously synthesized gaseous transmitter that participates in the regulation of the cardiovascular system and has a cardioprotective effect under ischemia–reperfusion conditions. Here, we studied possible mechanisms of the interaction of H2S and muscarinic acetylcholine receptors in the regulation of mice atrium contractility in the isometric conditions. We show that sodium hydrosulfide (NaHS), an exogenous donor of H2S, caused dose-dependent and reversible depression of the contractile force in the concentration range from 1 μM to 5 mM. The negative inotropic effect of NaHS did not change after the activation of muscarinic acetylcholine receptors by carbachol. However, we observed that the negative inotropic effect of carbachol increased after preliminary application of NaHS. The application of the reducing agent dithiothreitol did not change the effects of carbachol, which indicated that the effects of NaHS was not related to a direct action on the disulfide bonds of the receptor’s protein subunits. The increased effects of carbachol after NaHS application were not prevented by the inhibition of intracellular signaling pathway that mediated activation of M-cholinergic receptors, including adenylate cyclase, guanylate cyclase, and NO-synthase. However, an increase in the carbachol negative inotropic effect was not observed when ATP-dependent potassium channels were inhibited by glibenclamide. In its turn, activation of ATPdependent potassium channels by diazoxide resulted in an increase in carbachol negative inotropic action in the atrial myocardium of mice similar to the effect of NaHS. Our data indicate that the enhanced negative inotropic effect of carbachol under the action of H2S in the mouse atrium was mediated by the activation of ATP-dependent potassium channels.


hydrogen sulfide muscarinic acetylcholine receptors contractility mouse atria ATP-dependent potassium channels adenylate cyclase guanylate cyclase nitric oxide 



hydrogen sulfide


sodium hydrosulfide


carbon monoxide


nitric oxide


cystathionine β-synthase


cystathionine γ-lyase


3-mercaptopyruvate sulfurtransferase


ATPdependent potassium channels


muscarinic acetylcholine receptors

M2-AChR and M3-AChR

muscarinic acetylcholine receptors of type 2 and type 3, respectively


cyclic guanosine monophosphate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sitdikova, G.F. and Zefirov, A.L., Priroda (Moscow), 2010, no. 9, pp. 29–37.Google Scholar
  2. 2.
    Wang, R., Physiol. Rev., 2012, no. 92, pp. 791–896.CrossRefGoogle Scholar
  3. 3.
    Gerasimova, E., Lebedeva, J., Yakovlev, A., Zefirov, A., Giniatullin, R., and Sitdikova, G., J. Neurosci., 2015, vol. 303, pp. 577–585.CrossRefGoogle Scholar
  4. 4.
    Shafigullin, M.Y., Zefirov, R.A., Sabirullina, G.I., Zefirov, A.L., and Sitdikova, G.F., Bull. Exp. Biol. Med., 2014, vol. 157, no. 3, pp. 302–306.CrossRefGoogle Scholar
  5. 5.
    Wang, M.J., Cai, W.J., and Zhu, Y.C., Life Sci., 2016, vol. 153, pp. 188–197.CrossRefGoogle Scholar
  6. 6.
    Polhemus, D.J. and Lefer, D.J., Circ. Res., 2014, vol. 114, pp. 730–737.CrossRefGoogle Scholar
  7. 7.
    Elsey, D.J., Fowkes, R.C., and Baxter, G.F., Cell Biochem. Funct., 2010, vol. 28, no. 2, pp. 95–106.CrossRefGoogle Scholar
  8. 8.
    Yong, Q.C., Pan, T.T., Hu, L.F., and Bian, J.S., J. Mol. Cell. Cardiol., 2008, vol. 44, no. 4, pp. 701–710.CrossRefGoogle Scholar
  9. 9.
    Sun, Y.G., Cao, Y.X., Wang, W.W., Ma, S.F., Yao, T., and Zhu, Y.C., Cardiovasc. Res., 2008, vol. 79, pp. 632–641.CrossRefGoogle Scholar
  10. 10.
    Xu, M., Wu, Y.M., Li, Q., Wang, F.W., and He, R.R., Sheng Li Xue Bao, 2007, vol. 59, no. 2, pp. 215–220.Google Scholar
  11. 11.
    Sitdikova, G.F., Khaertdinov, N.N., and Zefirov, A.L., Bull. Exp. Biol. Med., 2011, vol. 151, no. 2, pp. 163–166.CrossRefGoogle Scholar
  12. 12.
    Khaertdinov, N.N., Ahmetshina, D.R., Zefirov, A.L., and Sitdikova, G.F., Biochemistry (Moscow) Suppl. Ser. A: Membrane Cell Biol., 2013, vol. 7, pp. 52–57.CrossRefGoogle Scholar
  13. 13.
    Khaertdinov, N.N., Lifanova, A.S., Gizzatullin, A.R., and Sitdikova, G.F., Genes and Cells, 2015, vol. 10, pp. 103–105.Google Scholar
  14. 14.
    Lifanova, A.S., Khaertdinov, N.N., Zakharov, A.V., Gizzatullin, A.R., and Sitdikova, G.F., Genes and Cells, 2014, vol. 9, no. 3, pp. 94–98.Google Scholar
  15. 15.
    Lifanova, A., Khaertdinov, N., and Sitdikova, G., BioNanoScience, 2017, vol. 7, no. 2, pp. 306–308.CrossRefGoogle Scholar
  16. 16.
    Coletta, C., Papapetropoulos, A., Erdelyi, K., Olah, G., Módis, K., Panopoulos, P., Asimakopoulou, A., Gerö, D., Sharina, I., Martin, E., and Szabo, C., Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 23, pp. 9161–9166.CrossRefGoogle Scholar
  17. 17.
    Aydinoglu, F., Dalkir, F.T., Demirbag, H.O., and Ogulener, N., Nitric Oxide, 2017, vol. 70, pp. 51–58.CrossRefGoogle Scholar
  18. 18.
    Sitdikova, G.F., Fuchs, R., Kainz, V., Weiger, T.M., and Hermann, A., Front. Physiol., 2014, vol. 5, no. 431, pp. 1–15.Google Scholar
  19. 19.
    DeLeon, E.R., Stoy, G.F., and Olson, K.R., Anal. Biochem., 2012, vol. 421, no. 1, pp. 203–207.CrossRefGoogle Scholar
  20. 20.
    Geng, B., Yang, J., Qi, Y., Zhao, J., Pang, Y., Du, J., and Tang, C., Biochem. Biophys. Res. Commun., 2004, vol. 313, pp. 362–368.CrossRefGoogle Scholar
  21. 21.
    Abramochkin, D.V., Moiseenko, L.S., and Kuzmin, V.S., Bull. Exp. Biol. Med., 2009, vol. 147, no. 6, pp. 683–686.CrossRefGoogle Scholar
  22. 22.
    Hara, Y., Ike, A., Tanida, R., Okada, M., and Yamawaki, H., J. Pharmacol. Exp. Ther., 2009, vol. 331, no. 3, pp. 808–815.CrossRefGoogle Scholar
  23. 23.
    Harvey, R.D. and Belevych, A.E., Br. J. Pharmacol., 2003, vol. 139, no. 6, pp. 1074–1084.CrossRefGoogle Scholar
  24. 24.
    Balligand, J.L., Kelly, R.A., Marsden, P.A., Smith, T.W., and Michel, T., Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 347–351.CrossRefGoogle Scholar
  25. 25.
    Wang, Z., Shi, H., and Wang, H., Br. J. Pharmacol., 2004, vol. 142, no. 3, pp. 395–408.CrossRefGoogle Scholar
  26. 26.
    Moncada, S., Palmer, R.M.J., and Higgs, E.A., Pharmacol. Rev., 1991, vol. 43, pp. 109–142.Google Scholar
  27. 27.
    Lu, J., Zang, W.J., Yu, X.J., Jia, B., Chorvatova, A., and Sun, L., Eur. J. Pharmacol., 2006, vol. 549, pp. 133–139.CrossRefGoogle Scholar
  28. 28.
    Ribalet, B., John, S.A., Xie, L.H., and Weiss, J.N., J. Mol. Cell. Cardiol., 2005, vol. 39, pp. 71–77.CrossRefGoogle Scholar
  29. 29.
    Jiang, B., Tang, G., Cao, K., Wu, L., and Wang, R., Antioxid. Redox Signal., 2010, vol. 12, no. 10, pp. 1167–1178.CrossRefGoogle Scholar
  30. 30.
    Mustafa, A.K., Gadalla, M.M., and Snyder, S.H., Sci. Signal., 2009, vol. 2, no. 68, pp. 1–17.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Blokhina
    • 1
  • N. N. Khaertdinov
    • 1
  • A. L. Zefirov
    • 2
  • G. F. Sitdikova
    • 1
    • 3
    Email author
  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.Kazan State Medical UniversityKazanRussia
  3. 3.KazanRussia

Personalised recommendations