Skip to main content
Log in

The Number of IgG-Positive Neurons in the Rat Hippocampus Increases after Dosed Traumatic Brain Injury

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

To evaluate the consequences of traumatic brain injury (TBI), we used a model of lateral fluid percussion brain injury in freely moving male Wistar rats. The immediate response to TBI included development of motor excitation and tonic–clonic seizures. Morphological analysis was performed 7 day after TBI. To localize IgG in the brain, rat brain slices were double stained with antibodies against IgG and NeuN (neuronal marker). To evaluate the state of microglia, we performed staining with Isolectin B4 (a microglial marker). The number of neurons was measured in sections stained using the Nissl method. The results show the IgG accumulation in neurons adjacent to cortical focus of trauma. In the hippocampus, IgG was accumulated in the neurons of the ipsilateral hippocampal CA1 and CA2 fields and the dentate gyrus, while in the contralateral hemisphere IgG was accumulated in the neurons of the CA1 field. These changes were accompanied by activation of microglia in the hippocampus, as well as by a decrease in neuronal density in the dentate gyrus of the ipsilateral hippocampus. The results show that TBI leads to bilateral damage to the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grady, M.S., Charleston, J.S., Maris, D., Witgen, B.M., and Lifshitz, J., J. Neurotrauma, 2003, vol. 20, no. 10, pp. 929–941.

    Article  PubMed  Google Scholar 

  2. Tran, L.D., Lifshitz, J., Witgen, B.M., Schwarzbach, E., Cohen, A.S., and Grady, M.S., J. Neurotrauma, 2006, vol. 23, no. 9, pp. 1330–1342.

    Article  PubMed  Google Scholar 

  3. Aungst, S.L., Kabadi, S.V., Thompson, S.M., Stoica, B.A., and Faden, A.I., J. Cereb. Blood Flow Metab., 2014, vol. 34, no. 7, pp. 1223–1232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fonseca, A.C., Matias, D., Garcia, C., Amaral, R., Geraldo, L.H., Freitas, C., and Lima, F.R., Front. Cell. Neurosci., 2014, vol. 8: 362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Aihara, N., Tanno, H., Hall, J.J., Pitts, L.H., and Noble, L.J., J. Comp. Neurol., 1994, no. 4, pp. 481–496.

    Article  Google Scholar 

  6. Hoshino, S., Kobayashi, S., and Nakazawa, S., Brain Res., 1996, vol. 711, nos. 1–2, pp. 73–83.

    Article  PubMed  CAS  Google Scholar 

  7. Salar, S., Maslarova, A., Lippmann, K., Nichtweiss, J., Weissberg, I., Sheintuch, L., Kunz, W.S., Shorer, Z., Friedman, A., and Heinemann, U., Epilepsia, 2014, vol. 55, no. 8, pp. 1255–1263.

    Article  PubMed  CAS  Google Scholar 

  8. Michalak, Z., Lebrun, A., Di Miceli, M., Rousset, M.C., Crespel, A., Coubes, P., Henshall, D.C., Lerner- Natoli, M., and Rigau, V., J. Neuropathol. Exp. Neurol., 2012, vol. 71, no. 9, pp. 826–838.

    Article  PubMed  CAS  Google Scholar 

  9. Kabadi, S.V., Hilton, G.D., Stoica, B.A., Zapple, D.N., and Faden, A.I., Nat. Protoc., 2010, vol. 5, no. 9, pp. 1552–1563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Komol'tsev, I.G., Levshina, I.P., Novikova, M.R., Stepanichev, M.Yu., Tishkina, A.O., and Gulyaeva, N.V., Morfologiya, 2015, vol. 148, no. 5, pp. 14–20.

    CAS  Google Scholar 

  11. McIntosh, T.K., Vink, R., Noble, L., Yamakami, I., Fernyak, S., Soares, H., and Faden, A.L., Neuroscience, 1989, vol. 28, no. 1, pp. 233–244.

    Article  PubMed  CAS  Google Scholar 

  12. Thompson, H.J., Lifshitz, J., Marklund, N., Grady, M.S., Graham, D.I., Hovda, D.A., and McIntosh, T.K., J. Neurotrauma, 2005, vol. 22, no. 1, pp. 42–75.

    Article  PubMed  Google Scholar 

  13. Gurkoff, G.G., Gahan, J.D., Ghiasvand, R.T., Hunsaker, M.R., Van, K., Feng, J.F., Shahlaie, K., Berman, R.F., Lyeth, B.G., and Folkerts, M.M., J. Neurotrauma, 2013, vol. 30, no. 4, pp. 292–300.

    Article  PubMed  Google Scholar 

  14. Jones, N.C., Cardamone, L., Williams, J.P., Salzberg, M.R., Myers, D., and O’Brien, T.J., J. Neurotrauma, 2008, vol. 25, no. 11, pp. 1367–1374.

    Article  PubMed  Google Scholar 

  15. Pitkanen, A. and Immonen, R., Neurotherapeutics, 2014, vol. 11, no. 2, pp. 286–296.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wulsin, A.C., Solomon, M.B., Privitera, M.D., Danzer, S.C., and Herman, J.P., Physiol. Behav., 2016, vol. 166, pp. 22–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Globus, M.Y., Alonso, O., Dietrich, W.D., Busto, R., and Ginsberg, M.D., J. Neurochem., 1995, vol. 65, no. 4, pp. 1704–1711.

    Article  PubMed  CAS  Google Scholar 

  18. Krishnamurthy, K., and Laskowitz, D.T., in Translational Research in Traumatic Brain Injury, Laskowitz, D. and Grant, G., Eds., Boca Raton (FL): CRC Press/Taylor and Francis Group, 2016, ch. 5.

  19. Pitkanen, A., Immonen, R.J., Grohn, O.H.J., and Kharatishvili, I., Epilepsia, 2009, vol. 50, pp. 21–29.

    Article  PubMed  Google Scholar 

  20. D’Ambrosio, R., Fender, J.S., Fairbanks, J.P., Simon, E.A., Born, D.E., Doyle, D.L., and Miller, J.W., Brain, 2005, vol. 128, no. 1, pp. 174–188.

    Article  PubMed  Google Scholar 

  21. Malmgren, K. and Thom, M., Epilepsia, 2012, vol. 53, pp. 19–33.

    Article  PubMed  CAS  Google Scholar 

  22. Aniol, V.A., Ivanova-Dyatlova, A.Y., Keren, O., Guekht, A.B., Sarne, Y., and Gulyaeva, N.V., Epilepsy Behav., 2013, vol. 26, no. 2, pp. 196–202.

    Article  PubMed  Google Scholar 

  23. Onufriev, M.V., Stepanichev, M.Yu., Tishkina, A.O., Sidorova, S.V., and Gulyaeva, N.V., Neurochem. J., 2014, vol. 8, no. 1, pp. 71–77.

    Article  CAS  Google Scholar 

  24. Tobin, R.P., Mukherjee, S., Kain, J.M., Rogers, S.K., Henderson, S.K., Motal, H.L., Newell Rogers, M.K., and Shapiro, L.A., Acta Neuropathol. Commun., 2014, vol. 2, no. 1, p. 143.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, J., Niu, N., Li, B., and McNutt, M.A., J. Histochem. Cytochem., 2013, vol. 61, no. 12, pp. 869–879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ohara, S., Inoue, K., Yamada, M., Yamawaki, T., Koganezawa, N., Tsutsui, K., Witter, M.P., and Iijima, T., Front. Neuroanat., 2009, vol. 3, no. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Komol’tsev.

Additional information

Original Russian Text © I.G. Komol’tsev, A.A. Volkova, I.P. Levshina, M.R. Novikova, A.O. Manolova, M.Yu. Stepanichev, N.V. Gulyaeva, 2018, published in Neirokhimiya, 2018, Vol. 35, No. 3, pp. 250–255.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komol’tsev, I.G., Volkova, A.A., Levshina, I.P. et al. The Number of IgG-Positive Neurons in the Rat Hippocampus Increases after Dosed Traumatic Brain Injury. Neurochem. J. 12, 256–261 (2018). https://doi.org/10.1134/S1819712418030054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712418030054

Keywords

Navigation