Neurochemical Journal

, Volume 9, Issue 4, pp 295–298 | Cite as

Semax prevents the death of tyrosine hydroxylase-positive neurons in a mixed neuroglial cell culture derived from the embryonic rat mesencephalon in a model of 6-hydroxydopamine-induced neurotoxicity

  • O. V. Dolotov
  • K. O. Eremin
  • L. A. Andreeva
  • E. V. Novosadova
  • K. S. Raevskii
  • N. F. Myasoedov
  • I. A. Grivennikov
Experimental Articles


The peptide Semax (MEHFPGP), which is an analogue of the ACTH (4–10) fragment, has a wide spectrum of activity in the nervous system of mammals, including humans. Using a model of neurotoxicity induced by hydroxydopamine, we studied the ability of Semax to prevent the death of tyrosine hydroxylase-positive neurons in a primary mixed neuroglial cell culture derived from the mesencephalon of rat embryos. We found that the application of 6-hydroxydopamine at concentrations of 2 and 5 µM to the culture medium induced a dose-dependent loss of tyrosine hydroxylase-positive neurons by 25 and 65%, respectively. The application of Semax at a concentration of 0.1 µM 30 min prior to treatment with 5 µM 6-hydroxydopamine significantly increased the number of tyrosine hydroxylase-positive neurons by 30–40%. Addition of Semax to cell cultures 24 h prior to the neurotoxin did not reveal the protective effect of the peptide. These data show that Semax may potentially be used for the treatment of some neurodegenerative diseases that are associated with a loss of dopaminergic neurons in the CNS.


primary neuronal cultures Semax neurotoxicity 6-hydroxydopamine dopaminergic neurons tyrosine hydroxylase neuroprotection immunocytochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Illarioshkin, S.N., Konformatsionnye bolezni mozga (Conformation Diseases of the Brain), Moscow: Yanus-K, 2003.Google Scholar
  2. 2.
    Cookson, M.R., Hardy, J., and Lewis, P.A., Int. J. Clin. Exp. Pathol., 2008, vol. 1, pp. 217–231.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Meredith, G.E., Sonsalla, P., and Chesselet, M.P., Acta Neuropathol., 2008, vol. 115, pp. 385–398.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Van Kampen, J.M., McGeer, E.G., and Stoessl, A.J., Synapse, 2000, vol. 37, pp. 171–178.CrossRefPubMedGoogle Scholar
  5. 5.
    De Wied, D. and Jolles, J., Physiol. Rev., 1982, vol. 62, pp. 976–1059.PubMedGoogle Scholar
  6. 6.
    Hol, E.M., Gispen, W.H., and Bar, P.R., Peptides, 1995, vol. 16, pp. 979–993.CrossRefPubMedGoogle Scholar
  7. 7.
    Levitskaya, N.G. and Kamenskii, A.A., Usp. Fiziol. Nauk, 2009, vol. 40, pp. 44–65.Google Scholar
  8. 8.
    Ashmarin, I.P., Nezavibat’ko, V.N., Myasoedov, N.F., Kamenskii, A.A., Grivennikov, I.A., Ponomareva Stepnaya, M.A., Andreeva, L.A., Kaplan, A.Ya., Koshelev, V.B., and Ryasina, T.V., Zh. Vyssh. Nerv. Deiat. im. I.P. Pavlova, 1997, vol. 47, pp. 420–430.Google Scholar
  9. 9.
    Gusev, E.I. and Skvortsova, V.I., Ishemiya golovnogo mozga (Brain Ischemia), Moscow: Meditsina, 2001.Google Scholar
  10. 10.
    Ashmarin, I.P., Samonina, G.E., Lyapina, L.A., Kamenskii, A.A., Levitskaya, N.G., Grivennikov, I.A., Dolotov, O.V., Andreeva, L.A., and Myasoedov, N.F., Pathophysiology, 2005, vol. 11, pp. 179–185.CrossRefPubMedGoogle Scholar
  11. 11.
    Grivennikov, I.A., Dolotov, O.V., and Gol’dina, Yu.I., Mol. Biol., 1999, vol. 33, pp. 120–126.Google Scholar
  12. 12.
    Grivennikov, I.A., Dolotov, O.V., Zolotarev, Y.A., Andreeva, L.A., Myasoedov, N.F., Leacher, L., Black, I.B., and Dreyfus, C.F., Restor. Neurol. Neurosci., 2008, vol. 26, pp. 35–43.PubMedGoogle Scholar
  13. 13.
    Safarova, E.R., Shram, S.I., Zolotarev, Yu.A., and Myasoedov, N.F., Byull. Eksp. Biol. Med., 2003, vol. 135, pp. 309–313.CrossRefGoogle Scholar
  14. 14.
    Antonawich, F.J., Azmitia, E.C., and Strand, F.L., Peptides, 1993, vol. 14, pp. 1317–1324.CrossRefPubMedGoogle Scholar
  15. 15.
    Vos, P.E., Bluemink, G.J., Wolterink, G., and Van Ree, J.M., Neuropeptides, 1991, vol. 19, pp. 271–279.CrossRefPubMedGoogle Scholar
  16. 16.
    Ostrovskaya, R.U., Gudasheva, T.A., Voronina, T.A., and Seredenin, S.B., Eksp. Klin. Farmakol., 2002, vol. 65, pp. 66–72.Google Scholar
  17. 17.
    Spina, M.B., Squinto, S.P., Miller, J., Lindsay, R.M., and Hyman, C., J. Neurochem., 1992, vol. 59, pp. 99–106.CrossRefPubMedGoogle Scholar
  18. 18.
    Oo, T.F., Kholodilov, N., and Burke, R.E., J. Neurosci., 2003, vol. 23, pp. 5141–5148.PubMedGoogle Scholar
  19. 19.
    Kramer, B.C., Goldman, A.D., and Mytilineou, C., Brain Res., 1999, vol. 851, pp. 221–227.CrossRefPubMedGoogle Scholar
  20. 20.
    Shadrina, M.I., Dolotov, O.V., Grivennikov, I.A., Inozemtzeva, L.S., Slominsky, P.A., Limborskaya, S.A., and Myasoedov, N.F., Neurosci. Lett., 2001, vol. 308, pp. 115–118.CrossRefPubMedGoogle Scholar
  21. 21.
    Dolotov, O.V., Karpenko, E.A., Inozemtseva, L.S., Seredenina, T.S., Levitskaya, N.G., Rozyczka, J., Dubynina, E.V., Novosadova, E.V., Andreeva, L.A., Alfeeva, L.Yu., Kamensky, A.A., Grivennikov, I.A., Myasoedov, N.F., and Engele, J., Brain Res., 2006, vol. 1117, pp. 54–60.CrossRefPubMedGoogle Scholar
  22. 22.
    Eggert, K., Schlegel, J., Oertel, W., Wurz, C., Krieg, J.C., and Vedder, H., Neurosci. Lett., 1999, vol. 269, pp. 178–182.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. V. Dolotov
    • 1
  • K. O. Eremin
    • 2
  • L. A. Andreeva
    • 1
  • E. V. Novosadova
    • 1
  • K. S. Raevskii
    • 2
  • N. F. Myasoedov
    • 1
  • I. A. Grivennikov
    • 1
  1. 1.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Zakusov Institute of PharmacologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations