Neurochemical Journal

, 1:173 | Cite as

Glyprolines in regulatory tripeptides

Review Articles

Abstract

Glyprolines widely occur in structures of regulatory oligopeptides with a wide spectrum of bioactivities. The role of glyprolines is most significant in regulatory tripeptides. They participate in the stabilization of regulatory oligopeptides in organisms and in the generation of a complex new spectra of bioactivities. Gly-Pro-Glu, Gly-Pro-Leu, Leu-Gly-Pro, Gly-Pro-Arg, Ac-Pro-Gly-Pro, and Gly-Pro-Gly-NH2 serve as examples. The glyprolines deserve further systematic comparative studies. The data in this review can be used to guide elaboration of new peptide medicinal drugs, including hybrid peptides.

Key words

glyprolines regulatory peptides tripeptides Gly-Pro-Glu Gly-Pro-Leu Leu-Gly-Pro Gly-Pro-Arg Ac-Pro-Gly-Pro Gly-Pro-Gly-NH2 

Abbreviations

ACE

angiotensin-converting enzyme

RP

regulatory peptides

RT

regulatory tripeptides

References

  1. 1.
    Ashmarin, I.P., Samonina, G.E., Lyapina, L.A., et al., Pathophysiology, 2005, vol. 11,Is. 4, pp. 179–185.PubMedCrossRefGoogle Scholar
  2. 2.
    Samonina, G.E., Ashmarin, I.P., and Lyapina, L.A., Pathophysiology, 2002, vol. 8,Is. 4, pp. 229–234.PubMedCrossRefGoogle Scholar
  3. 3.
    Lyapina, L.A., Pastorova, V.E., Ul’yanov, A.M., et al., Vestn. Mosk. Univ., Ser. 16, 2002, pp. 409–414.Google Scholar
  4. 4.
    Ashmarin, I.P., Karazeeva, E.P., Lyapina, L.A., and Samonina, G.E., Biokhimiya (Moscow), Issue 63, pp. 119–124.Google Scholar
  5. 5.
    Umarova, B.A., Kopylova, G.N., Smirnova, E.A., et al., BEBM, 2003, vol. 137, no. 10, pp. 371–373.Google Scholar
  6. 6.
    Iwai, K., Hasegawa, T., Taguchi, Y., et al., J. Agric. Food Chem., 2005, vol. 53, no. 16, pp. 6531–6536.PubMedCrossRefGoogle Scholar
  7. 7.
    Gudasheva, T.A., Boyko, S.S., Akparov, V.Kh., et al., FEBS Lett., 1996. vol. 391, pp. 149–152.PubMedCrossRefGoogle Scholar
  8. 8.
    Pastorova, V.E., Lyapina, L.A., Ostrovskaya, R.U., et al., Izv. Ross. Acad. Nauk, 2001, no. 5, pp. 607–610.Google Scholar
  9. 9.
    Knight, C.G., Morton, L.F., Onley, D.J., et al., Cardiovasc. Res., 1999, vol. 41, no. 2, pp. 450–457.PubMedCrossRefGoogle Scholar
  10. 10.
    Sizonenko, S.V., Sirimanne, E.S., Williams, C.E., and Gluckman, P.D., Brain Res., 2001, vol. 922, no. 1, pp. 32–50.CrossRefGoogle Scholar
  11. 11.
    Guan, J., Thomas, G.B., Mathai, S., et al., Neuropharmacology, 2004, vol. 47, no. 6, pp. 892–903.PubMedCrossRefGoogle Scholar
  12. 12.
    Alonso De Diego, S.A., Gutierrez-Rodriguez, M., Perez de Vega, M.J., et al., Bioorg. Med. Chem. Lett., 2006, vol. 16, no. 13, pp. 3396–3400.PubMedCrossRefGoogle Scholar
  13. 13.
    Alonso De Diego, S.A., Minoz, P., Gonzalez-Muniz, R., et al., Bioorg. Med. Chem. Lett., 2005, vol. 15, no. 9, pp. 2279–2283.PubMedCrossRefGoogle Scholar
  14. 14.
    Baker, A.M., Batchelor, D.C., Thomas, G.B., et al., Neuropeptides, 2005, vol. 39, no. 2, pp. 81–87.PubMedCrossRefGoogle Scholar
  15. 15.
    Ioudina, M. and Uemura, E., Exp. Neurol., 2003, vol. 184, no. 2, pp. 923–929.PubMedCrossRefGoogle Scholar
  16. 16.
    Nonaka, I., Katsuda, S., Ohmori, T., et al., Biosci. Biotechnol. Biochem., 1997, vol. 61, no. 5, pp. 772–775.PubMedCrossRefGoogle Scholar
  17. 17.
    Haddox, J.L., Pfister, R.R., Muccio, D.D., et al., Invest. Ophthalmol. Vis. Sci., 1999, vol. 40, no. 10, pp. 2427–2429.PubMedGoogle Scholar
  18. 18.
    Weathington, N.M., van Houwelingen, A.H., Noerager, B.D., et al., Nat. Med., 2006, vol. 12, no. 3, pp. 317–323.PubMedCrossRefGoogle Scholar
  19. 19.
    Byun, H.G. and Kim, S.K., J. Biochem. Mol. Biol., 2002, vol. 35, no. 2, pp. 239–243.PubMedGoogle Scholar
  20. 20.
    Saiga, A., Okumura, T., Makihara, T., et al., J. Agric. Food Chem., 2006, vol. 54, no. 3, pp. 942–945.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Biological FacultyMoscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations