Polymer Science, Series C

, Volume 61, Issue 1, pp 107–119 | Cite as

Synthesis and Gas-Separation Properties of New Silacyclopentane-Containing Polynorbornenes

  • V. A. Zhigarev
  • A. A. MorontsevEmail author
  • R. Yu. Nikiforov
  • M. L. Gringolts
  • N. A. Belov
  • N. G. Komalenkova
  • V. G. Lakhtin
  • E. Sh. Finkelshtein


Previously, it was shown that the presence of bulky silicon-containing substituents in the monomer unit of metathesis polynorbornenes hinders the postmodification and, in particular, exhaustive gem-difluorocyclopropanation of main-chain double bonds. In order to reduce the double bonds shielding by substituents, a new polynorbornene with a dimethylsilacyclopentane fragment in the monomer unit, poly(4,4-dimethyltricyclo[,6]-4-siladec-8-ene) (PNBCP), is synthesized, in which the silylmethyl group is moved further from the double bonds. In order to achieve this, the monomer 4,4-dimethyltricyclo[,6]-4-siladec-8-ene (NBCP) is first obtained via the diene condensation of 1,3-cyclopentadiene and 1,1-dichlorosilacyclopent-3-ene with following methylation of Si-Cl bonds. NBCP is polymerized by the ring-opening metathesis scheme in the presence of the first-generation Grubbs catalyst, Cl2(PCy3)2Ru=CHPh. The new polymer PNBCP is obtained in a yield of 99–100% and characterized. The gem-difluorocyclopropanation of PNBCP with difluorocarbene, generated during the thermolysis of sodium chlorofluoroacetate, is studied; the conditions for exhaustive replacement of double bonds by gem-difluorocyclopropane are found. It is shown that PNBCP is more active in postmodification compared to poly(5-trimethylsilyl)norbornene but is less active than unsubstituted polynorbornene. It is demonstrated that the introduction of the silacyclopentane fragment into the monomer unit of the metathesis polynorbornene and its subsequent difluorocyclopropanation lead to increase in gas permeability and diffusion and cause a slight decrease in ideal separation selectivities. It is found that gem-difluorocyclopropanation increases the glass transition temperature of PNBCP by 60°C and makes its films stable when stored in air.



The structure of the obtained compounds was studied using the equipment of the Shared Research Center of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences and the Center for Molecular Studies of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

We are grateful to Dr. A.S. Peregudov for his help in determining the structure of the monomer and polymers, G.A. Shandryuk for DSC and TGA studies, and S.А. Korchagina for GPC analysis.


The study was performed under the State Program of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.


  1. 1.
    M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, Macromolecules 50, 7809 (2017).CrossRefGoogle Scholar
  2. 2.
    J. K. Adewole, A. L. Ahmad, S. Ismail, and C. P. Leo, Int. J. Greenhouse Gas Control 17, 46 (2013).CrossRefGoogle Scholar
  3. 3.
    Membrane Materials for Gas and Vapor Separation: Synthesis and Application of Silicon-Containing Polymers, Ed. by Yu. Yampolskii and E. Finkelshtein (Wiley, Chichester, 2017).Google Scholar
  4. 4.
    J. A. Cruz-Morales, J. Vargas, A. A. Santiago, S. R. Vásquez-García, M. A. Tlenkopatchev, T. D. Lys, and M. López-González, High Perform. Polym. 28, 1246 (2016).CrossRefGoogle Scholar
  5. 5.
    I. L. Borisov, T. R. Akmalov, A. O. Ivanov, V. V. Volkov, E. Sh. Finkelshtein, and M. V. Bermeshev, Mendeleev Commun. 26, 124 (2016).CrossRefGoogle Scholar
  6. 6.
    E. Sh. Finkelshtein, M. V. Bermeshev, M. L. Gringolts, L. E. Starannikova, and Yu. P. Yampolskii, Russ. Chem. Rev. 80, 341 (2011).CrossRefGoogle Scholar
  7. 7.
    Yu. P. Yampolskii, L. E. Starannikova, N. A. Belov, M. V. Bermeshev, M. L. Gringolts, and E. Sh. Finkelshtein, J. Membr. Sci. 453, 532 (2014).CrossRefGoogle Scholar
  8. 8.
    E. Sh. Finkelshtein, M. L. Gringolts, M. V. Bermeshev, P. P. Chapala, and Y. V. Rogan, in Membrane Materials for Gas and Vapor Separation, Ed. by Yu. Yampolskii and E. Finkelshtein (Wiley, Chichester, 2017), p. 143.Google Scholar
  9. 9.
    V. R. Flid, M. L. Gringolts, R. S. Shamsiev, and E. Sh. Finkelshtein, Russ. Chem. Rev. 87, 1169 (2018).CrossRefGoogle Scholar
  10. 10.
    G. O. Karpov, M. V. Bermeshev, I. L. Borisov, S. R. Sterlin, A. A. Tyutyunov, N. P. Yevlampieva, B. A. Bulgakov, V. V. Volkov, and E. Sh. Finkelshtein, Polymer 153, 626 (2018).CrossRefGoogle Scholar
  11. 11.
    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, N. A. Belov, V. E. Ryzhikh, V. P. Shantarovich, V. G. Lakhtin, N. N. Gavrilova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Macromolecules 48, 8055 (2015).CrossRefGoogle Scholar
  12. 12.
    M. V. Bermeshev and P. P. Chapala, Prog. Polym. Sci. 84, 1 (2018).CrossRefGoogle Scholar
  13. 13.
    D. A. Alentiev, E. S. Egorova, M. V. Bermeshev, L. E. Starannikova, M. A. Topchiy, A. F. Asachenko, P. S. Gribanov, M. S. Nechaev, Yu. P. Yampolskii, and E. Sh. Finkelshtein, J. Mater. Chem. A 6, 19393 (2018).CrossRefGoogle Scholar
  14. 14.
    D. A. Alentiev, D. M. Dzhaparidze, P. P. Chapala, M. V. Bermeshev, N. A. Belov, R. Yu. Nikiforov, L. E. Starannikova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 60, 612 (2018).CrossRefGoogle Scholar
  15. 15.
    A. A. Morontsev, M. L. Gringolts, M. P. Filatova, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 58, 695 (2016).CrossRefGoogle Scholar
  16. 16.
    N. A. Belov, M. L. Gringolts, A. A. Morontsev, L. E. Starannikova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 59, 560 (2017).CrossRefGoogle Scholar
  17. 17.
    A. A. Morontsev, V. A. Zhigarev, R. Yu. Nikiforov, N. A. Belov, M. L. Gringolts, E. Sh. Finkelshtein, and Yu. P. Yampolskii, Eur. Polym. J. 99, 340 (2018).CrossRefGoogle Scholar
  18. 18.
    E. A. Chernyshev, N. G. Komalenkova, S. A. Bashkirova, and V. V. Sokolov, Zh. Obshch. Khim. 48 (110), 830 (1978).Google Scholar
  19. 19.
    Y. K. Kim, D. B. Bourrie, and O. R. Pierce, J. Polym. Sci.: Polym. Chem. Ed. 16, 483 (1978).Google Scholar
  20. 20.
    Yu. P. Yampol’skii, S. G. Durgar’yan, and N. S. Nametkin, Vysokomol. Soedin., Ser. B 21, 616 (1979).Google Scholar
  21. 21.
    T. Masuda, Y. Iguchi, B. Z. Tang, and T. Higashimura, Polymer 29, 2041 (1988).CrossRefGoogle Scholar
  22. 22.
    A. Yu. Alentiev, Yu. P. Yampolskii, V. A. Ryzhikh, and D. A. Tsarev, Pet. Chem. 53, 554 (2013).CrossRefGoogle Scholar
  23. 23.
    H. Y. Zhao, Y. M. Cao, X. L. Ding, M. Q. Zhou, and Q. Yuan, J. Membr. Sci. 323, 176 (2008).CrossRefGoogle Scholar
  24. 24.
    A. L. Ievlev, Y. Y. Teplyakov, S. G. Durgaryan, and N. S. Nametkin, Dokl. Akad. Nauk SSSR 264, 1421 (1982).Google Scholar
  25. 25.
    T. C. Merkel, V. I. Bondar, K. Nagai, and B. D. Freeman, J. Polym. Sci., Part B: Polym. Phys. 38, 273 (2000).CrossRefGoogle Scholar
  26. 26.
    L. M. Robeson, J. Membr. Sci. 320, 390 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Zhigarev
    • 1
  • A. A. Morontsev
    • 1
    Email author
  • R. Yu. Nikiforov
    • 1
  • M. L. Gringolts
    • 1
  • N. A. Belov
    • 1
  • N. G. Komalenkova
    • 2
  • V. G. Lakhtin
    • 2
  • E. Sh. Finkelshtein
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds (GNIIChTEOS)MoscowRussia

Personalised recommendations