Polymer Science, Series C

, Volume 61, Issue 1, pp 2–16 | Cite as

Metathesis Polymerization in Ionic Media

  • D. O. PonkratovEmail author
  • A. S. Shaplov
  • Ya. S. Vygodskii


The article summarizes the literature data on polymer synthesis by olefin and acetylene metathesis in ionic liquid media—salts in the liquid state—at room temperature or close to it. The features and methods of optimization of polymerization process in ionic media, including those using ionic catalysts are discussed. The possibility of multiple use of ionic solvents and catalysts dissolved in them is demonstrated. Data on the polymerization of ionic monomers and the prospects for using ionic polymers obtained by metathesis polymerization are presented.



This study was supported by the Russian Foundation for Basic Research (project no. 18-33-20108).


  1. 1.
    Ionic Liquids in Synthesis, Ed. by P. Wasserscheid and T. Welton (Wiley, Weinheim, 2007).Google Scholar
  2. 2.
    J. P. Hallett and T. Welton, Chem. Rev. 111, 3508 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    S. A. Forsyth, J. M. Pringle, and D. R. MacFarlane, Aust. J. Chem. 57, 113 (2004).CrossRefGoogle Scholar
  4. 4.
    Ya. S. Vygodskii, E. I. Lozinskaya, and A. S. Shaplov, Polym. Sci., Ser. C 43, 236 (2001).Google Scholar
  5. 5.
    R. Sheldon, Chem. Commun. 2001, 2399 (2001).CrossRefGoogle Scholar
  6. 6.
    K. R. Seddon, J. Chem. Technol. Biotechnol. 68, 351 (1997).CrossRefGoogle Scholar
  7. 7.
    J. D. Holbrey and K. R. Seddon, Clean Technol. Environ. Policy 1, 223 (1999).CrossRefGoogle Scholar
  8. 8.
    T. Welton, Chem. Rev. 99, 2071 (1999).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    P. Sledz, M. Mauduit, and K. Grela, Chem. Soc. Rev. 37, 2433 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    P. A. Thomas and B. B. Marvey, Molecules 21, 184 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Xie, H. Han, L. Ding, and J. Shi, Polym. Rev. 49, 315 (2009).CrossRefGoogle Scholar
  12. 12.
    Yu. P. Yampolskii, L. E. Starannikiva, N. A. Belov, M. V. Bermeshev, M. L. Gringolts, and E. Sh. Finkelshtein, J. Membr. Sci. 453, 532 (2014).CrossRefGoogle Scholar
  13. 13.
    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, N. A. Belov, V. E. Ryzhikh, V. P. Shantarovich, V. G. Lakhtin, N. N. Gavrilova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Macromolecules 48, 8055 (2015).CrossRefGoogle Scholar
  14. 14.
    E. Sh. Finkelshtein, K. L. Makovetskii, M. L. Gringolts, Yu. V. Rogan, T. G. Golenko, L. E. Starannikova, Yu. P. Yampolskii, V. P. Shantarovich, and T. Suzuki, Macromolecules 39, 7022 (2006).CrossRefGoogle Scholar
  15. 15.
    M. L. Gringolts, M. V. Bermeshev, Yu. P. Yampolskii, L. E. Starannikiva, V. P. Shantarovich, and E. Sh. Finkelshtein, Macromolecules 43, 7165 (2010).CrossRefGoogle Scholar
  16. 16.
    D. A. Alentiev, D. M. Dzhaparidze, N. N. Gavrilova, V. P. Shantarovich, E. V. Kiseleva, M. A. Topchiy, A. F. Asachenko, P. S. Gribanov, M. S. Nechaev, S. A. Legkov, G. N. Bondarenko, and M. V. Bermeshev, Polymers 10, 1382 (2018).CrossRefGoogle Scholar
  17. 17.
    M. V. Bermeshev and P. P. Chapala, Prog. Polym. Sci. 84, 1 (2018).CrossRefGoogle Scholar
  18. 18.
    W. L. Truett, D. R. Johnson, I. M. Robinson, and B. A. Montague, J. Am. Chem. Soc. 82, 2337 (1960).CrossRefGoogle Scholar
  19. 19.
    R. R. Schrock, J. Feldman, L. F. Cannizzo, and R. H. Grubbs, Macromolecules 20, 1169 (1987).CrossRefGoogle Scholar
  20. 20.
    R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare, and M. O’Regan, J. Am. Chem. Soc. 112, 3875 (1990).CrossRefGoogle Scholar
  21. 21.
    M. R. Buchmeiser, Chem. Rev. 100, 1565 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    P. Schwab, M. B. France, J. W. Ziller, and R. H. Grubbs, Angew. Chem., Int. Ed. 34, 2039 (1995).CrossRefGoogle Scholar
  23. 23.
    S. T. Nguyen, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc. 115, 9858 (1993).CrossRefGoogle Scholar
  24. 24.
    Handbook of Metathesis: Catalyst Development, Ed. by R. H. Grubbs (Wiley, Weinheim, 2003).Google Scholar
  25. 25.
    J. A. Love, J. P. Morgan, T. M. Trnka, and R. H. Grubbs, Angew. Chem., Int. Ed. Engl. 41, 4035 (2002).CrossRefGoogle Scholar
  26. 26.
    S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, J. Am. Chem. Soc. 122, 8168 (2000).CrossRefGoogle Scholar
  27. 27.
    Y. S. Vygodskii, A. S. Shaplov, E. I. Lozinskaya, K. A. Lysenko, D. G. Golovanov, I. A. Malyshkina, N. D. Gavrilova, and M. R. Buchmeiser, Macromol. Chem. Phys. 209, 40 (2008).CrossRefGoogle Scholar
  28. 28.
    H. Han, F. Chen, J. Yu, J. Dang, Z. Ma, Y. Zhang, and M. Xie, J. Polym. Sci., Part A: Polym. Chem. 45, 3986 (2007).CrossRefGoogle Scholar
  29. 29.
    M. Xie, Y. Kong, H. Han, J. Shi, L. Ding, C. Song, and Y. Zhang, React. Funct. Polym. 68, 1601 (2008).CrossRefGoogle Scholar
  30. 30.
    Q. Yao and M. Sheets, J. Organomet. Chem. 690, 3577 (2005).CrossRefGoogle Scholar
  31. 31.
    H. Clavier, N. Audic, J.-C. Guillemin, and M. Mauduit, J. Organomet. Chem. 690, 3585 (2005).CrossRefGoogle Scholar
  32. 32.
    N. Audic, H. Clavier, M. Mauduit, and J.-C. Guillemin, J. Am. Chem. Soc. 125, 9248 (2003).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    C. Thurier, C. Fischmeister, C. Bruneau, H. Olivier-Bourbigou, and P. H. Dixneuf, J. Mol. Catal. A: Chem. 268, 127 (2007).CrossRefGoogle Scholar
  34. 34.
    T. E. Schmid, A. Dumas, S. Colombel-Rouen, C. Crevisy, O. Basle, and M. Mauduit, Synlett 28, 773 (2017).CrossRefGoogle Scholar
  35. 35.
    N. Clousier, A. Filippi, E. Borr, E. Guibal, C. Crevisy, F. Caijo, M. Mauduit, I. Dez, and A.-C. Gaumont, ChemSusChem 7, 1040 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    A. Keraani, M. Rabiller-Baudry, C. Fischmeister, and C. Bruneau, Catal. Today 156, 268 (2010).CrossRefGoogle Scholar
  37. 37.
    C. S. Consorti, G. L. P. Aydos, and J. Dupont, Chem. Commun. 46, 9058 (2010).CrossRefGoogle Scholar
  38. 38.
    C. S. Consorti, G. L. P. Aydos, G. Ebeling, and J. Dupont, Organometallics 28, 4527 (2009).CrossRefGoogle Scholar
  39. 39.
    S.-W. Chen, J. H. Kim, K. Y. Ryu, W.-W. Lee, and J. Hong, Tetrahedron 65, 3397 (2009).CrossRefGoogle Scholar
  40. 40.
    J. H. Kim, B. Y. Park, S.-W. Chen, and S. Lee, Eur. J. Org. Chem. 2009, 2239 (2009).CrossRefGoogle Scholar
  41. 41.
    H. Wakamatsu, Y. Saito, M. Masubuchi, and R. Fujita, Synlett 2008, 1805 (2008).CrossRefGoogle Scholar
  42. 42.
    H. Clavier, S. P. Nolan, and M. Mauduit, Organometallics 27, 2287 (2008).CrossRefGoogle Scholar
  43. 43.
    J. Suriboot, H. S. Bazzi, and D. E. Bergbreiter, Polymers 8, 140 (2016).CrossRefGoogle Scholar
  44. 44.
    M. Koy, H. J. Altmann, B. Autenrieth, W. Frey, and M. R. Buchmeiser, Beilstein J. Org. Chem. 11, 1632 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    B. Autenrieth, W. Frey, and M. R. Buchmeiser, Chem.- Eur. J. 18, 14069 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    J. Zhao, D. Wang, B. Autenrieth, and M. R. Buchmeiser, Macromol. Rapid Commun. 36, 190 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    “Olefin Metathesis,” in Metal Catalysed Reactions in Ionic Liquids, Ed. by P. J. Dyson and G. J. Tilmann (Springer, Dordrecht, 2005), Chap. 7, p. 155.Google Scholar
  48. 48.
    Q. Yao and Y. Zhang, Angew. Chem., Int. Ed. 42, 3395 (2003).CrossRefGoogle Scholar
  49. 49.
    N. Audic, H. Clavier, M. Mauduit, and J.-C. Guillemin, J. Am. Chem. Soc. 125, 9248 (2003).CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    H. Clavier, N. Audic, M. Mauduit, and J.-C. Guillemin, Chem. Commun. 2004, 2282 (2004).CrossRefGoogle Scholar
  51. 51.
    W. Song, H. Han, X. Liao, R. Sun, J. Wu, and M. Xie, Macromolecules 47, 6181 (2014).CrossRefGoogle Scholar
  52. 52.
    M.-R. Xie, Z. Ma, H.-J. Han, J.-X. Shi, W.-Z. Wang, J.-X. Li, and Y.-Q. Zhang, Chem. J. Chin. Univ. 30, 396 (2009).Google Scholar
  53. 53.
    H. Han, J. Liu, W. Huang, C. Song, Y. Zhang, and M. Xie, Acta Polym. Sin., No. 5, 492 (2008).Google Scholar
  54. 54.
    Y. S. Vygodskii, A. S. Shaplov, E. I. Lozinskaya, O. A. Filippov, E. S. Shubina, R. Bandari, and M. R. Buchmeiser, Macromolecules 39, 7821 (2006).CrossRefGoogle Scholar
  55. 55.
    C. Simocko, T. C. Young, and K. B. Wagener, Macromolecules 48, 5470 (2015).CrossRefGoogle Scholar
  56. 56.
    Ya. S. Vygodskii, A. S. Shaplov, E. I. Lozinskaya, P. S. Vlasov, I. A. Malyshkina, N. D. Gavrilova, P. S. Kumar, and M. R. Buchmeiser, Macromolecules 41, 1919 (2008).CrossRefGoogle Scholar
  57. 57.
    C. Simocko, Y. Yang, T. M. Swager, and K. B. Wagener, ACS Macro Lett. 2, 1061 (2013).CrossRefGoogle Scholar
  58. 58.
    C. Daguenet and P. J. Dyson, Organometallics 23, 6080 (2004).CrossRefGoogle Scholar
  59. 59.
    S. Csihony, C. Fischmeister, C. Bruneau, I. T. Horvath, and P. H. Dixneu, New J. Chem. 26, 1667 (2002).CrossRefGoogle Scholar
  60. 60.
    C. P. Ferraz, B. Autenrieth, W. Frey, and M. R. Buchmeiser, ChemCatChem 6, 191 (2014).CrossRefGoogle Scholar
  61. 61.
    M. M. Gallagher, A. D. Rooney, and J. J. Rooney, J. Mol. Catal. A: Chem. 303, 78 (2009).CrossRefGoogle Scholar
  62. 62.
    X. Ding, X. Lv, B. Hui, Z. Chen, M. Xiao, B. Guo, W. Tang, Tetrahedron Lett. 47, 2921 (2006).CrossRefGoogle Scholar
  63. 63.
    T. S. Halbach, J. O. Krause, O. Nuyken, and M. R. Buchmaiser, Macromol. Rapid Commun. 26, 784 (2005).CrossRefGoogle Scholar
  64. 64.
    S. Naumov and M. R. Buchmaiser, Organometallics 31, 847 (2012).CrossRefGoogle Scholar
  65. 65.
    A. S. Shaplov, D. O. Ponkratov, and Y. S. Vygodskii, Polym. Sci., Ser. B 58, 73 (2016).CrossRefGoogle Scholar
  66. 66.
    J. Wang, X. He, H. Zhu, and D. Chen, RSC Adv. 5, 43581 (2015).Google Scholar
  67. 67.
    X. He, Z. Wang, W. Zhou, X. Jiang, Z. Han, and D. Chen, J. Appl. Polym. Sci. 134, 44884 (2017).Google Scholar
  68. 68.
    Q. Ye, T. Gao, F. Wan, B. Yu, X. Pei, F. Zhou, and Q. Xue, J. Mater. Chem. 22, 13123 (2012).CrossRefGoogle Scholar
  69. 69.
    I. Njoroge, M. W. Matson, and G. K. K. Jennings, J. Phys. Chem. C 121, 20323 (2017).CrossRefGoogle Scholar
  70. 70.
    I. Njoroge, B. W. Bout, M. W. Matson, P. E. Laibinis, and G. K. Jennings, ACS Omega 3, 16158 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    E. F. Wiesenauer, J. P. Edwards, V. F. Scalfani, T. S. Bailey, and D. L. Gin, Macromolecules 44, 5075 (2011).CrossRefGoogle Scholar
  72. 72.
    E. F. Wiesenauer, P. T. Nguyen, B. S. Newell, T. S. Bailey, R. D. Noble, and D. L. Gin, Soft Matter 9, 7923 (2013).CrossRefGoogle Scholar
  73. 73.
    T. Suga, M. Sakata, K. Aoki, and H. Nishide, ACS Macro Lett. 3, 703 (2014).CrossRefGoogle Scholar
  74. 74.
    J. Cui, F.-M. Nie, J.-X. Yang, L. Pan, Z. Ma, and Y.‑S. Lia, J. Mater. Chem. A 5, 25220 (2017).CrossRefGoogle Scholar
  75. 75.
    R. R. Maddikeri, S. Colak, S. P. Gido, and G. N. Tew, Biomacromolecules 12, 3412 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    M. Xie, H. Han, W. Wang, X. He, and Y. Zhang, Macromol. Chem. Phys. 209, 544 (2008).CrossRefGoogle Scholar
  77. 77.
    W. You, K. M. Hugar, and G. W. Coates, Macromolecules 51, 3212 (2018).CrossRefGoogle Scholar
  78. 78.
    B. L. Langsdorf, X. Zhou, D. H. Adler, and M. C. Lonergan, Macromolecules 32, 2796 (1999).CrossRefGoogle Scholar
  79. 79.
    D. H. Johnston, L. Gao, and M. C. Lonergan, Macromolecules 43, 2676 (2010).CrossRefGoogle Scholar
  80. 80.
    H. Li, J. Wang, H. Han, J. Wu, and M. Xie, React. Funct. Polym. 127, 20 (2018).CrossRefGoogle Scholar
  81. 81.
    Y.-S. Gal, W.-C. Lee, J.-H. Lee, and S.-K. Choi, Bull. Korean Chem. Soc. 18, 22 (1997).Google Scholar
  82. 82.
    K.-L. Kang, S.-H. Kim, H.-N. Cho, K.-Y. Choi, and S.-K. Choi, Macromolecules 26, 4539 (1993).CrossRefGoogle Scholar
  83. 83.
    S.-H. Kim, S-J. Choi, J.-W. Park, H.-N. Cho, and S.‑K. Choi, Macromolecules 27, 2339 (1994).CrossRefGoogle Scholar
  84. 84.
    D.-C. Choi, S.-H. Kim, J.-H. Lee, H.-N. Cho, and S.‑K. Choi, Macromolecules 30, 176 (1997).CrossRefGoogle Scholar
  85. 85.
    N. Zhang, R. Wu, Q. Li, K. Pakbaz, C. O. Yoon, and F. Wudl, Chem. Mater. 5, 1598 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. O. Ponkratov
    • 1
    Email author
  • A. S. Shaplov
    • 1
    • 2
  • Ya. S. Vygodskii
    • 1
  1. 1.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia
  2. 2.Luxembourg Institute of Science and TechnologyEsch-sur-AlzetteLuxembourg

Personalised recommendations