Polymer Science, Series C

, Volume 61, Issue 1, pp 76–85 | Cite as

Synthesis, Structure and Properties of Poly(1-trimethylsilyl-1-propyne) Obtained with NbBr5- and TaBr5-Based Catalytic Systems

  • S. M. MatsonEmail author
  • A. A. Kossov
  • V. P. Makrushin
  • I. S. Levin
  • N. A. Zhilyaeva
  • E. G. Litvinova
  • V. S. Khotimskiy


In this work, the polymerization of 1-trimethylsilyl-1-propyne [TMSP] using catalytic systems based on pentabromide Nb(V) and Ta(V) with organometallic cocatalysts Ph3Bi, Ph4Sn, Bu4Sn, Ph3SiH, and Et3SiH was investigated. The use of NbBr5-based catalytic systems has strongly marked cis-stereospecificity and gives highly cis-enriched poly(1-trimethylsilyl-1-propyne) [PTMSP] (content of cis-units above 70%), whereas the use of TaBr5-based catalytic systems leads to the formation of PTMSP with mixed cis-/trans-composition (content of cis-units from 50 to 65%).With increasing cis-content, solvent resistance of PTMSP increases significantly. PTMSP with a content of cis-units above 70% obtained on NbBr5-containing systems in cyclohexane acquires resistance to aliphatic and aromatic hydrocarbons, and cis-regular PTMSP obtained on NbBr5-based systems in toluene is totally insoluble in any of the organic solvents. The results of wide-angle X-ray diffraction indicate an increase in the packing density of the polymer during the transition from a mixed configuration to a cis-regular one. Durable PTMSP film membranes exhibit ultra-high permeability coefficients for individual gases (e.g., \({{P}_{{{{{\text{O}}}_{{\text{2}}}}}}}\) = 8500–11000 barrer, \({{\alpha }_{{{{{\text{O}}}_{{\text{2}}}}{\text{/}}{{{\text{N}}}_{{\text{2}}}}}}}\) = 1.5–1.9). According to the low-temperature Ar sorption, PTMSP synthesized with NbBr5- and TaBr5-based catalytic systems has high BET surface areas in the range of 870–1050 m2/g, high intrinsic microporosity, and higher gas permeability coefficients of PTMSP correlate with BET surface area growth.



This work was supported by the Russian Science Foundation (project no. 18-13-00334).


  1. 1.
    T. Masuda, Polym. Rev. 57, 1 (2017).CrossRefGoogle Scholar
  2. 2.
    Y. Yampolskii, Macromolecules 45, 3298 (2012).CrossRefGoogle Scholar
  3. 3.
    Y. Yampolskii, Polym. Rev. 57, 200 (2017).CrossRefGoogle Scholar
  4. 4.
    K. Nagai, T. Masuda, T. Nakagawa, B. D. Freeman, and I. Pinnau, Prog. Polym. Sci. 26, 721 (2001).CrossRefGoogle Scholar
  5. 5.
    T. Masuda, B. Z. Tang, A. Tanaka, and T. Higashimura, Macromolecules 19, 1459 (1986).CrossRefGoogle Scholar
  6. 6.
    Y. Ichiraku, S. A. Stern, and T. Nakagawa, J. Membr. Sci. 34, 5 (1987).CrossRefGoogle Scholar
  7. 7.
    R. Srinivasan, S. R. Auvil, and P. M. Burban, J. Membr. Sci. 86, 67 (1994).CrossRefGoogle Scholar
  8. 8.
    D. Hoffmann, M. Heuchel, Yu. Yampolskii, V. Khotimskii, and V. Shantarovich, Macromolecules 35, 2129 (2002).CrossRefGoogle Scholar
  9. 9.
    S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, J. Membr. Sci. 333, 125 (2009).CrossRefGoogle Scholar
  10. 10.
    D. S. Pope, W. J. Koros, and H. B. Hopfenberg, Macromolecules 27, 5839 (1994).CrossRefGoogle Scholar
  11. 11.
    L. G. Toy, K. Nagai, B. D. Freeman, I. Pinnau, Z. He, T. Masuda, M. Teraguchi, and Yu. P. Yampolskii, Macromolecules 33, 2516 (2000).CrossRefGoogle Scholar
  12. 12.
    A. Morisato, H. C. Shen, S. S. Sankar, B. D. Freeman, I. Pinnau, and C. G. Casillas, J. Polym. Sci., Part B: Polym. Phys. 34, 2209 (1996).CrossRefGoogle Scholar
  13. 13.
    I. Pinnau and L. G. Toy, J. Membr. Sci. 116,199 (1996).CrossRefGoogle Scholar
  14. 14.
    A. Morisato and I. Pinnau, J. Membr. Sci. 121,243 (1996).CrossRefGoogle Scholar
  15. 15.
    T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, Chem. Mater.15,109 (2003).CrossRefGoogle Scholar
  16. 16.
    K. Takada, H. Matsuya, T. Masuda, and T. Higashimura, J. Appl. Polym. Sci. 30, 1605 (1985).Google Scholar
  17. 17.
    T. Masuda, E. Isobe, T. Higashimura, and T. Takada, J. Am. Chem. Soc. 105, 7473 (1983).CrossRefGoogle Scholar
  18. 18.
    N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampolskii, J. Membr. Sci. 60, 13 (1991).CrossRefGoogle Scholar
  19. 19.
    T. Masuda, E. Isobe, and T. Higashimura, Macromolecules 18, 841 (1985).CrossRefGoogle Scholar
  20. 20.
    T. Masuda, E. Isobe, T. Hamano, and T. Higashimura, Macromolecules 19, 2448 (1986).CrossRefGoogle Scholar
  21. 21.
    J. Fujimori, T. Masuda, and T. Higashimura, Polym. Bull. 19, 1 (1988).Google Scholar
  22. 22.
    V. S. Khotimsky, M. V. Tchirkova, E. G. Litvinova, A. I. Rebrov, and G. N. Bondarenko, J. Polym. Sci., Part A: Polym. Chem. 41, 2133 (2003).CrossRefGoogle Scholar
  23. 23.
    W. Yave, K.-V.Peinemann, S. Shishatskiy, V. Khotimskiy, M. Chirkova, S. Matson, E. Litvinova, and N. Lecerf, Macromolecules 40, 8991 (2007).CrossRefGoogle Scholar
  24. 24.
    T. J. Katz, S. J. Lee, and M. A. Shippey, J. Mol. Catal. 8, 219 (1980).CrossRefGoogle Scholar
  25. 25.
    T. J. Katz and S. J. Lee, J. Am. Chem. Soc. 102, 422 (1980).CrossRefGoogle Scholar
  26. 26.
    Y. Okano, T. Masuda, and T. Higashimura, Polym. J. 14, 477 (1982).CrossRefGoogle Scholar
  27. 27.
    J. F. Kunzler and V. Percec, J. Polym. Sci., Part A: Polym. Chem. 28, 1221 (1990).Google Scholar
  28. 28.
    E. G. Litvinova, V. M. Melekhov, N. V. Petrushanskaya, G. V. Rosheva, V. B. Fedotov, V. Sh. Feldblum, and V. S. Khotimskiy, RF Patent No. 1823457 (1993).Google Scholar
  29. 29.
    A. M. Shishatskii, Yu. P. Yampolskii, and K.-V. Peinemann, J. Membr. Sci. 112, 275 (1996).CrossRefGoogle Scholar
  30. 30.
    F. Fairbrother, J. F. Nixon, and H. Prophet, J. Less-Common Met. 9, 434 (1965).CrossRefGoogle Scholar
  31. 31.
    F. Fairbrother, The Chemistry of Niobium and Tantalum (Elsevier, Amsterdam, 1967).Google Scholar
  32. 32.
    Yu. K. Ovchinnikov, E. M. Antipov, G. S. Markova, and N. F. Bakeev, Macromol. Chem. 177, 1567 (1976).CrossRefGoogle Scholar
  33. 33.
    V. M. Polikarpov, E. M. Antipov, I. V. Razumovskaya, I. S. Bryantseva, E. G. Litvinova, M. V. Chirkova, Yu. M. Korolev, V. S. Khotimskii, and E. E. Antipov, Polym. Sci., Ser. A 44, 343 (2002).Google Scholar
  34. 34.
    S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer, New York, 2004).CrossRefGoogle Scholar
  35. 35.
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouqerol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. M. Matson
    • 1
    Email author
  • A. A. Kossov
    • 1
  • V. P. Makrushin
    • 1
  • I. S. Levin
    • 1
  • N. A. Zhilyaeva
    • 1
  • E. G. Litvinova
    • 1
  • V. S. Khotimskiy
    • 1
  1. 1.A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations