Polymer Science, Series C

, Volume 61, Issue 1, pp 41–48 | Cite as

Kinetics of Dicyclopentadiene Polymerization in the Presence of the Second Generation Hoveyda-Grubbs Catalyst with N-Chelating Ligand

  • A. A. Lyapkov
  • L. S. Soroka
  • R. V. Ashirov
  • D. I. Zemlyakov
  • D. A. Rusakov
  • F. VerpoortEmail author


This article considers the thermodynamic aspects, thermo- and rheokinetics of endo-dicyclopentadiene polymerization in the presence of the original metathesis second Hoveyda-Grubbs catalyst with an N-chelating ligand. The activation energy of endo-dicyclopentadiene polymerization was determined as 88.9–89.2 kJ/mol. The thermal effect of the ring-opening metathesis endo-dicyclopentadiene polymerization reaction reaches 52.7 kJ/mol. This is lower than the values for molybdenum- and tungsten-containing catalysts reported in the literature, which can be explained by a different microstructure of the polymer produced in the presence of ruthenium-based metathesis catalysts.



The authors acknowledge the support from the Russian Foundation for Basic Research (no. 18-29-04047) and Tomsk Polytechnic University Competitiveness Enhancement Program grant (VIU-195/2018).


  1. 1.
    S. Monsaert, A. Lozano Vila, R. Drozdzak, P. Van Der Voort, and F. Verpoort, Chem. Soc. Rev. 38, 3360 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Monsaert, N. Ledoux, R. Drozdzak, and F. Verpoort, J. Polym. Sci., Part A: Polym. Chem. 48, 302 (2010).CrossRefGoogle Scholar
  3. 3.
    R. Drozdzak, N. Nishioka, G. Recher, and F. Verpoort, Macromol. Symp. 293, 1 (2010).CrossRefGoogle Scholar
  4. 4.
    S. Sutthasupa, M. Shiotsuki, T. Masuda, and F. Sanda, J. Am. Chem. Soc. 131, 10546 (2009).CrossRefGoogle Scholar
  5. 5.
    Y. Xia, J. A. Kornfield, and R. H. Grubbs, Macromolecules 42, 3761 (2009).CrossRefGoogle Scholar
  6. 6.
    C. W. Bielawski, D. Benitez, and R. H. Grubbs, J. Am. Chem. Soc. 123, 11312 (2001).CrossRefGoogle Scholar
  7. 7.
    A.J. Boydston, Y. Xia, J. A. Kornfield, I. A. Gorodetskaya, and R. H. Grubbs, J. Am. Chem. Soc. 130, 12775 (2008).CrossRefGoogle Scholar
  8. 8.
    Y. Xia, A. J. Boydston, Y. Yao, J. A. Kornfield, I. A. Gorodetskaya, H. W. Spiess, and R. H. Grubbs, J. Am. Chem. Soc. 131, 2670 (2009).CrossRefGoogle Scholar
  9. 9.
    J. C. Mol, J. Mol. Catal. A: Chem. 213, 39 (2004).CrossRefGoogle Scholar
  10. 10.
    K. Weissermel and H.-J. Arpe, Industrielle Organische Chemie, 4th ed. (Wiley-VCH, Weinheim, 1994).Google Scholar
  11. 11.
    O. M. Singh, J. Sci. Ind. Res.65, 957 (2006).Google Scholar
  12. 12.
    V. D. Kolesnik, R. V. Ashirov, N. M. Shcheglova, E. S. Novikova, R. V. Yakimov, A. A. Nosikov, M. N. Bogomolova, and N. M. Cheremukhina, RF Patent No. 2,409,420 (2011).Google Scholar
  13. 13.
    M. R. Kessler, N. R. Sottos, and S. R. White, Composites, Part A 34, 743 (2003).CrossRefGoogle Scholar
  14. 14.
    K. Oláh, Period. Polytech., Chem. Eng. 45, 3 (2001).Google Scholar
  15. 15.
    M. R. Kessler and S. R. White, J. Polym. Sci., Part A: Polym. Chem. 40, 2373 (2002).CrossRefGoogle Scholar
  16. 16.
    H. J. Borchardt and F. Daniels, J. Am. Chem. Soc. 79, 41 (1957).CrossRefGoogle Scholar
  17. 17.
    A. K. Oppenheim, R. Spektor, A. L. Kuhl, in Proceedings of 17th ICDERS, Heidelberg, Germany, 1999 (Heidelberg, 1999), p. 128.Google Scholar
  18. 18.
    H. L. Friedman, J. Polym. Sci., Part C: Polym. Symp. 6, 183 (1963).CrossRefGoogle Scholar
  19. 19.
    J. H. Flynn and L. A. Wall, J. Polym. Sci., Part B: Polym. Lett. 4, 191 (1966).CrossRefGoogle Scholar
  20. 20.
    J. H. Flynn and L. A. Wall, J. Polym. Sci., Part B: Polym. Lett. 5, 323 (1967).CrossRefGoogle Scholar
  21. 21.
    T. Ozawa, Bull. Chem. Soc. Jpn. 38, 1881 (1965).CrossRefGoogle Scholar
  22. 22.
    T. A. Davidson, K. B. Wagener, and D. B. Priddy, Macromolecules 29, 786 (1996).CrossRefGoogle Scholar
  23. 23.
    B. J. Rohde, K.-M. Le, R. Krishnamoorti, and M. L. Robertson, Macromolecules 49, 8960 (2016).CrossRefGoogle Scholar
  24. 24.
    M. Cioffi, A. C. Hoffmann, and L. P. B. M. Janssen, Polym. Eng. Sci. 41, 595 (2001).CrossRefGoogle Scholar
  25. 25.
    M. R. Kessler, G. E. Larin, and N. Bernklau, J. Therm. Anal. Calorim. 85, 7 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Cioffi, K. J. Ganzeveld, A. C. Hoffmann, and L. P. B. M. Janssen, Polym. Eng. Sci. 42, 2383 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Lyapkov
    • 1
  • L. S. Soroka
    • 1
  • R. V. Ashirov
    • 2
  • D. I. Zemlyakov
    • 1
  • D. A. Rusakov
    • 3
  • F. Verpoort
    • 1
    • 4
    Email author
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.POLUS, JSCKrasnoyarskRussia
  3. 3.Universität WienWienAustria
  4. 4.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhanChina

Personalised recommendations