Advertisement

Polymer Science, Series C

, Volume 61, Issue 1, pp 58–64 | Cite as

Iridium-Containing Polymers Based on Norbornene and 7-Oxa-norbornene Monomers: Synthesis and Photophysical and Biological Properties

  • L. N. BochkarevEmail author
  • E. O. Platonova
  • S. A. Lermontova
  • L. G. Klapshina
  • A. N. Konev
  • G. A. Abakumov
Article
  • 8 Downloads

Abstract

Polymers containing oligoether groups, amino acid fragments, and luminophore complexes of iridium(III) in side chains are synthesized by metathesis polymerization. The photophysical properties of the compounds obtained are studied. The iridium-containing copolymers show intense green, blue-green, and red photoluminescence, and the color is determined by the nature of the iridium(III) complexes contained in polymeric emitters. Polymeric products are soluble in water and form micelles with average sizes of 19–54 nm. The cytotoxicity of the polymers with respect to A431 human epidermoid carcinoma cells is determined.

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research (project no. 15-43-02178-r_povolzh’e_a). Determination of cytotoxicity was supported by the Russian Science Foundation (project 18-73-00194).

REFERENCES

  1. 1.
    C. W. Bielawski and R. H. Grubbs, Prog. Polym. Sci. 32, 1 (2007).CrossRefGoogle Scholar
  2. 2.
    A. Leitgeb, J. Wappel, and C. Slugovc, Polymer 51, 2927 (2010).CrossRefGoogle Scholar
  3. 3.
    N. Zaquen, L. Lutsen, D. Vanderzande, and T. Junkers, Polym. Chem 7, 1355 (2016).CrossRefGoogle Scholar
  4. 4.
    N. V. Rao, M. N. Ganivada, S. Sarkar, H. Dinda, K. Chatterjee, T. Dalui, J. Das Sarma, and R. Shunmugam, Bioconjugate Chem. 25, 276 (2014).CrossRefGoogle Scholar
  5. 5.
    Y. Shao, Y.-G. Jia, C. Shi, J. Luo, and X. X. Zhu, Biomacromolecules 15, 1837 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Ö. Tezgel, J. C. Telfer, and G. N. Tew, Biomacromolecules 12, 3078 (2011).CrossRefGoogle Scholar
  7. 7.
    F. Gueugnon, I. Denis, D. Pouliquen, F. Collette, R. Delatouche, V. Heroguez, M. Gregoire, P. Bertrand, and C. Blanquart, Biomacromolecules 14, 2396 (2013).CrossRefGoogle Scholar
  8. 8.
    K. K.-W. Lo, S. P.-Y. Li, and K. Y. Zhang, New J. Chem. 35, 265 (2011).CrossRefGoogle Scholar
  9. 9.
    E. Baggaley, J. A. Weinstein, and J. A. G. Williams, Coord. Chem. Rev. 256, 1762 (2012).CrossRefGoogle Scholar
  10. 10.
    Highly Efficient OLEDs with Phosphorescent Materials, Ed. by H. Yersin (Wiley-VCH, Weinheim, 2008).Google Scholar
  11. 11.
    Y. You and S. Y. Park, Dalton Trans. 2009, 1267 (2009).CrossRefGoogle Scholar
  12. 12.
    A. F. Rausch, H. H. H. Homeier, and H. Yersin, Top. Organomet. Chem. 29, 193 (2010).CrossRefGoogle Scholar
  13. 13.
    B. J. Powell, Coord. Chem. Rev. 295, 46 (2015).CrossRefGoogle Scholar
  14. 14.
    Yu. E. Begantsova, L. N. Bochkarev, M. A. Samsonov, and G. K. Fukin, Russ. J. Coord. Chem. 39, 661 (2013).CrossRefGoogle Scholar
  15. 15.
    L. N. Bochkarev, Yu. E. Begantsova, E. O. Platonova, G. V. Basova, A. V. Rozhkov, V. A. Il’ichev, E. V. Baranov, G. A. Abakumov, and M. N. Bochkarev, Russ. Chem. Bull. 63, 1001 (2014).CrossRefGoogle Scholar
  16. 16.
    L. N. Bochkarev, Yu. E. Begantsova, V. A. Il’ichev, E. V. Baranov, and G. A. Abakumov, Russ. J. Coord. Chem. 41, 555 (2015).CrossRefGoogle Scholar
  17. 17.
    E. O. Platonova, V. A. Il’ichev, E. V. Baranov, and L. N. Bochkarev, Russ. J. Coord. Chem. 42, 187 (2016).CrossRefGoogle Scholar
  18. 18.
    Yu. P. Parshina and L. N. Bochkarev, Russ. J. Gen. Chem. 86, 2081 (2016).CrossRefGoogle Scholar
  19. 19.
    E. O. Platonova, A. P. Pushkarev, V. A. Ilichev, E. V. Baranov, T. A. Kovylina, and L. N. Bochkarev, Russ. J. Coord. Chem. 43, 491 (2017).CrossRefGoogle Scholar
  20. 20.
    E. O. Platonova, A. V. Rozhkov, S. A. Lermontova, L. G. Klapshina, A. N. Konev, L. N. Bochkarev, and G. A. Abakumov, Russ. J. Gen. Chem. 88, 2081 (2018).Google Scholar
  21. 21.
    J. S. Hersey, A. Meller, and M. W. Grinstaff, Anal. Chem. 87, 11863 (2015).CrossRefGoogle Scholar
  22. 22.
    S. Sutthasupa, M. Shiotsuki, H. Matsuoka, T. Masuda, and F. Sanda, Macromolecules 43, 1815 (2010).CrossRefGoogle Scholar
  23. 23.
    M. Scholl, S. Ding, C. W. Lee, and R. H. Grubbs, Org. Lett. 1, 953 (1999).CrossRefGoogle Scholar
  24. 24.
    J. A. Love, J. P. Morgan, T. M. Trnka, and R. H. Grubbs, Angew. Chem., Int. Ed. 41, 4035 (2002).CrossRefGoogle Scholar
  25. 25.
    D. Magde, R. Wong, and P. G. Seybold, Photochem. Photobiol. 75, 327 (2002).CrossRefGoogle Scholar
  26. 26.
    F. López Arbeloa, P. Ruiz Ojeda, and I. López Arbeloa, J. Lumin. 44, 105 (1989).CrossRefGoogle Scholar
  27. 27.
    J. N. Demas and G. A. Crosby, J. Phys. Chem. 75, 991 (1971).CrossRefGoogle Scholar
  28. 28.
    M. G. Freshney, in Culture of Immortalized Cells, Ed. by R. I. Freshney and M.G. Freshney (Wiley-Liss, New York, 2010).CrossRefGoogle Scholar
  29. 29.
    T. Bauer and C. Slugovc, J. Polym. Sci., Part A: Polym. Chem. 48, 2098 (2010).CrossRefGoogle Scholar
  30. 30.
    M. Montalti, A. Credi, L. Prodi, and M. T. Gandolfi, Handbook of Photochemistry (CRC Press, Boca Raton, 2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. N. Bochkarev
    • 1
    Email author
  • E. O. Platonova
    • 1
  • S. A. Lermontova
    • 1
  • L. G. Klapshina
    • 1
  • A. N. Konev
    • 1
  • G. A. Abakumov
    • 1
  1. 1.G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations