Advertisement

Polymer Science, Series C

, Volume 61, Issue 1, pp 186–197 | Cite as

Radical Substitution of the Dithiocarbonyl Group of Poly(methyl methacrylate) Obtained by Reversible Addition–Fragmentation Chain Transfer Polymerization

  • M. Z. Bekanova
  • N. K. Neumolotov
  • A. D. Jablanovic
  • A. V. Plutalova
  • E. V. ChernikovaEmail author
Article
  • 16 Downloads

Abstract

The authors perform a systematic study of the reaction of radical replacement of the dithiocarbonyl group of poly(methyl methacrylate) (PMMA) obtained by reversible addition–fragmentation chain transfer polymerization upon interaction with a radical azo initiator in an inert solvent at 80°C. It is shown that, for a polymer with a dithiobenzoate group, an increase in the molar ratio of the concentrations of the initiator and macromolecules with a terminal dithiobenzoate group to 100 equivalents promotes fast and quantitative replacement of the dithiobenzoate group by the initiator fragment and suppression of side chain termination reactions with the participation of radical intermediates. To replace the trithiocarbonate group, milder conditions are required, namely, a 20-fold molar excess of the initiator and a short reaction time of 2–5 h. The stability of the radical intermediates plays the decisive role in choosing the replacement reaction conditions. The reversible chain transfer agent formed during the replacement reactions, a low-molecular-weight compound containing a dithiocarbonyl fragment, can be repeatedly used for PMMA synthesis.

Notes

FUNDING

The study was performed as part of the state task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (investigation of the polymer with a dithiobenzoate group) and the state task for the Moscow State University for the topic no. AAAA-A16-116031050014-6 Modern Problems of Chemistry and Physics of High-Molecular-Weight Compounds (investigation of the polymer with a trithiocarbonate group).

REFERENCES

  1. 1.
    D. A. Shipp, Polym. Rev. 51, 99 (2011).CrossRefGoogle Scholar
  2. 2.
    Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies, Ed. by K. Matyjaszewski, H. Gao, B. S. Sumerlin, and N. V. Tsarevsky (ACS Symp. Ser., Washington, DC, 2018), Vol. 1284.Google Scholar
  3. 3.
    M. Destarac, Polym. Chem. 9, 4947 (2018).CrossRefGoogle Scholar
  4. 4.
    B. Klumperman, in Encyclopedia of Polymer Science and Technology, Ed. by H. F. Mark (Wiley, New York, 2015), p. 1.Google Scholar
  5. 5.
    D. Vinciguerra, J. Tran, and J. Nicolas, Chem. Commun. 54, 228 (2018).CrossRefGoogle Scholar
  6. 6.
    G. Moad, E. Rizzardo, and S. H. Thang, Polymer 49, 1079 (2008).CrossRefGoogle Scholar
  7. 7.
    G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem. 62, 1402 (2009).CrossRefGoogle Scholar
  8. 8.
    G. Moad, E. Rizzardo, and S. H. Thang, Polym. Int. 60, 9 (2011).CrossRefGoogle Scholar
  9. 9.
    G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem. 65, 985 (2012).CrossRefGoogle Scholar
  10. 10.
    H. Willcock and R. K. O’Reilly, Polym. Chem. 1, 149 (2010).CrossRefGoogle Scholar
  11. 11.
    G. Moad, E. Rizzardo, and S. H. Thang, Polym. Int. 60, 9 (2011).CrossRefGoogle Scholar
  12. 12.
    B. Chong, G. Moad, E. Rizzardo, M. Skidmore, and S. H. Thang, Aust. J. Chem. 59, 755 (2006).CrossRefGoogle Scholar
  13. 13.
    Handbook of RAFT Polymerization, Ed. by C. Barner-Kowollik (Wiley-VCH, Weinheim, 2008).Google Scholar
  14. 14.
    C. Boyer, M. H. Stenzel, and T. P. Davis, J. Polym. Sci., Part A: Polym. Chem. 49, 551 (2011).CrossRefGoogle Scholar
  15. 15.
    E. V. Chernikova and E. V. Sivtsov, Polym. Sci., Ser. B 59, 117 (2017).CrossRefGoogle Scholar
  16. 16.
    G. Moad, Macromol. Chem. Phys. 215, 9 (2014).CrossRefGoogle Scholar
  17. 17.
    J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules 31, 5559 (1998).CrossRefGoogle Scholar
  18. 18.
    C. Barner-Kowollik, M. Buback, B. Charleux, M. L. Coote, M. Drache, T. Fukuda, A. Goto, B. Klumperman, A. B. Lowe, J. B. McLeary, G. Moad, M. J. Monteiro, R. D. Sanderson, M. P. Tonge, and P. Vana, J. Polym. Sci., Part A: Polym. Chem. 44, 5809 (2006).CrossRefGoogle Scholar
  19. 19.
    S. Perrier and P. Takolpuckdee, J. Polym. Sci., Part A: Polym. Chem. 43, 5347 (2005).CrossRefGoogle Scholar
  20. 20.
    M. A. Harvison and A. B. Lowe, Macromol. Rapid Commun. 32, 779 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Y. K. Chong, G. Moad, E. Rizzardo, and S. Thang, Macromolecules 40, 4446 (2007).CrossRefGoogle Scholar
  22. 22.
    C. W. Scales, A. J. Convertine, and C. L. McCormick, Biomacromolecules 7, 1389 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    A. N. Zelikin, G. K. Such, A. Postma, and F. Caruso, Biomacromolecules 8, 2950 (2007).PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    G. Moad, Y. K. Chong, A. Postma, E. Rizzardo, and S. H. Thang, Polymer 46, 8458 (2005).CrossRefGoogle Scholar
  25. 25.
    K. L. Heredia, G. N. Grover, L. Tao, and H. D. Maynard, Macromolecules 42, 2360 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    A. J. Inglis, S. Sinnwell, T. P. Davis, C. Barner-Kowollik, and M. H. Stenzel, Macromolecules 41, 4120 (2008).CrossRefGoogle Scholar
  27. 27.
    S. Sinnwell, A. J. Inglis, T. P. Davis, M. H. Stenzel, and C. Barner-Kowollik, Chem. Commun. 44, 2052 (2008).CrossRefGoogle Scholar
  28. 28.
    E. V. Chernikova, A. V. Plutalova, E. S. Garina, and D. V. Vishnevetsky, Polym. Chem. 7, 3622 (2016).CrossRefGoogle Scholar
  29. 29.
    J. M. Spruell, B. A. Levy, A. Sutherland, W. R. Dichtel, J. Y. Cheng, F. J. Stoddart, and A. Nelson, J. Polym. Sci., Part A: Polym. Chem. 47, 346 (2009).CrossRefGoogle Scholar
  30. 30.
    G. N. Grover, S. N. S. Alconcel, N. M. Matsumoto, and H. D. Maynard, Macromolecules 42, 7657 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    M. Li, P. De, S. R. Gondi, and B. S. Sumerlin, J. Polym. Sci., Part A: Polym. Chem. 46, 5093 (2008).CrossRefGoogle Scholar
  32. 32.
    C. Boyer, V. Bulmus, and T. P. Davis, Macromol. Rapid Commun. 30, 493 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    A. Postma, T. P. Davis, R. A. Evans, G. Li, G. Moad, and M. S. O’Shea, Macromolecules 36, 5293 (2006).CrossRefGoogle Scholar
  34. 34.
    M. Chen, G. Moad, and E. Rizzardo, J. Polym. Sci., Part A: Polym. Chem. 47, 6704 (2009).CrossRefGoogle Scholar
  35. 35.
    A. Postma, T. P. Davis, G. Moad, and M. S. O’Shea, Macromolecules 38, 5371 (2005).CrossRefGoogle Scholar
  36. 36.
    V. Lima, H. Jiang, J. Brokken-Zijp, P. J. Schoenmakers, B. Klumperman, and R. V. D. Linde, J. Polym. Sci., Part A: Polym. Chem. 43, 959 (2005).CrossRefGoogle Scholar
  37. 37.
    D. L. Patton, M. Mullings, T. Fulghum, and R. C. Advincula, Macromolecules 38, 8597 (2005).CrossRefGoogle Scholar
  38. 38.
    P. J. Roth, K. T. Wiss, R. Zentel, and P. Theato, Macromolecules 41, 8513 (2008).CrossRefGoogle Scholar
  39. 39.
    E. V. Chernikova, A. V. Tarasenko, E. S. Garina, and V. B. Golubev, Polym. Sci., Ser. A 50, 353 (2008).CrossRefGoogle Scholar
  40. 40.
    E. V. Chernikova, V. B. Golubev, A. N. Filippov, and E. S. Garina, Polym. Sci., Ser. C 57, 94 (2015).CrossRefGoogle Scholar
  41. 41.
    A. Studer and S. Amrein, Synthesis, No. 7, 835 (2002).Google Scholar
  42. 42.
    D. V. Vishnevetski, E. V. Chernikova, E. S. Garina, and E. V. Sivtsov, Polym. Sci., Ser. B 55, 515 (2013).CrossRefGoogle Scholar
  43. 43.
    E. A. Litmanovich, M. Z. Bekanova, G. A. Shandryuk, E. V. Chernikova, and R. V. Talroze, Polymer 142, 1 (2018).CrossRefGoogle Scholar
  44. 44.
    Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. A. Grulke (Wiley, New York, 1999).Google Scholar
  45. 45.
    G. Moad, Macromol. Chem. Phys. 215, 9 (2014).CrossRefGoogle Scholar
  46. 46.
    Y. Zhou, J. He, C. Li, L. Hong, and Y. Yang, Macromolecules 44, 8446 (2011).CrossRefGoogle Scholar
  47. 47.
    V. B. Golubev, A. N. Filippov, E. V. Chernikova, M. L. Coote, C. Y. Lin, and G. Gryn’ova, Polym. Sci., Ser. C 53, 14 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. Z. Bekanova
    • 1
    • 2
  • N. K. Neumolotov
    • 1
  • A. D. Jablanovic
    • 3
  • A. V. Plutalova
    • 1
  • E. V. Chernikova
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry, Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  3. 3.Department of Materials Sciences, Moscow State UniversityMoscowRussia

Personalised recommendations