Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 106–117 | Cite as

Phase Separation in Polymer Solutions under Extension

  • A. V. Subbotin
  • A. N. Semenov
Article

Abstract

The results obtained recently by the authors during investigation of the phase behavior of polymer solutions under uniaxial tension are reviewed. The main attention is given to the dilute solutions of unentangled semiflexible macromolecules. The effect of the solution extension rate on the coil–stretched coil transition for semiflexible chains is considered, and stability of the system of stretched coils is analyzed in terms of their segregation followed by formation of the concentrated polymer phase. The spinodal and binodal of the system are determined depending on temperature and extension rate. The kinetics of solution segregation to polymer and solvent, where three stages, namely, (i) spinodal decomposition accompanied by the formation of regions with increased and reduced polymer contents, (ii) formation of the microfibrillar network, and (iii) network collapse yielding separation of the solvent from the polymer phase are identified, is described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Larson, Rheol. Acta. 31, 497 (1992).CrossRefGoogle Scholar
  2. 2.
    A. Ya. Malkin, A. Arinstein, and V. G. Kulichiknin, Prog. Polym. Sci. 39, 959 (2014).CrossRefGoogle Scholar
  3. 3.
    G. Ver Strate and W. Philippoff, J. Polym. Sci., Polym. Lett. 12, 267 (1974).CrossRefGoogle Scholar
  4. 4.
    D. F. James and J. H. Saringer, J. Fluid Mech. 97 (4), 655 (1980).CrossRefGoogle Scholar
  5. 5.
    P. N. Dunlap and L. G. Leal, J. Non-Newton. Fluid Mech. 23, 5 (1987).CrossRefGoogle Scholar
  6. 6.
    F. C. Frank, A. Keller, and M. R. Mackley, Polymer 12, 467 (1971).CrossRefGoogle Scholar
  7. 7.
    C. Rangel-Nafaile, A. B. Metzner, and K. F. Wissbrun, Macromolecules 17, 1187 (1984).CrossRefGoogle Scholar
  8. 8.
    P. J. Barham and A. Keller, Macromolecules 23, 303 (1990).CrossRefGoogle Scholar
  9. 9.
    J. W. van Egmond and G. G. Fuller, Macromolecules 26, 7182 (1993).CrossRefGoogle Scholar
  10. 10.
    S. Ya. Frenkel’, V. G. Baranov, N. G. Bel’nikevich, and Yu. N. Panov, Vysokomol. Soedin. 6 (10), 1917 (1964).Google Scholar
  11. 11.
    R. Sattler, C. Wagner, and J. Eggers, Phys. Rev. Lett. 100, 164502 (2008).CrossRefGoogle Scholar
  12. 12.
    R. Sattler, S. Gier, J. Eggers, and C. Wagner, Phys. Fluids 24, 023101 (2012).CrossRefGoogle Scholar
  13. 13.
    A. V. Semakov, V. G. Kulichikhin, A. K. Tereshin, S. V. Antonov, and A. Ya. Malkin, J. Polym. Sci., Polym. Phys. Ed. 53, 559 (2015).CrossRefGoogle Scholar
  14. 14.
    A. V. Semakov, I. Yu. Skvortsov, V. G. Kulichikhin, and A. Ya. Malkin, JETP Lett. 101, 690 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Ya. Malkin, A. V. Semakov, I. Yu. Skvortsov, P. Zatonskikh, V. G. Kulichikhin, A. V. Subbotin, and A. N. Semenov, Macromolecules 50, 8231 (2017).CrossRefGoogle Scholar
  16. 16.
    S. L. Wingstrand, L. Imperiali, R. Stepanyan, and O. Hassager, Polymer 136, 215 (2018).CrossRefGoogle Scholar
  17. 17.
    A. V. Bazilevskii, S. I. Voronkov, V. M. Entov, and A. N. Rozhkov, Sov. Phys. Dokl. 26, 333 (1981).Google Scholar
  18. 18.
    M. S. N. Oliveira and G. H. McKinley, Phys. Fluids 17, 071704 (2005).CrossRefGoogle Scholar
  19. 19.
    A. Onuki, Phys. Rev. Lett. 62, 2472 (1989).CrossRefGoogle Scholar
  20. 20.
    M. Doi and A. Onuki, J. Phys. II (France) 2, 1631 (1992).CrossRefGoogle Scholar
  21. 21.
    E. Helfand and G. H. Fredrickson, Phys. Rev. Lett. 62, 2468 (1989).CrossRefGoogle Scholar
  22. 22.
    S. T. Milner, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 48, 3674 (1993).CrossRefGoogle Scholar
  23. 23.
    M. Cromer, M. C. Villet, G. H. Fredrickson, L. G. Leal, R. Stepanyan, and M. J. H. Bulters, J. Rheol. 57, 1211 (2013).CrossRefGoogle Scholar
  24. 24.
    J. Eggers, Phys. Fluids 26, 033106 (2014).CrossRefGoogle Scholar
  25. 25.
    G. Szamel, Phys. Rev. Lett. 70, 1894 (1993).CrossRefGoogle Scholar
  26. 26.
    A. V. Subbotin and A. N. Semenov, J. Polym. Sci., Polym. Phys. Ed. 54, 1066 (2016).CrossRefGoogle Scholar
  27. 27.
    A. N. Semenov and A. V. Subbotin, AIP Conf. Proc. 1736, 020086 (2016).CrossRefGoogle Scholar
  28. 28.
    A. N. Semenov and A. V. Subbotin, J. Polym. Sci., Polym. Phys. Ed. 55, 623 (2017).CrossRefGoogle Scholar
  29. 29.
    S. M. Bhattacharjee, G. H. Fredrickson, and E. Helfand, J. Chem. Phys. 90, 3305 (1989).CrossRefGoogle Scholar
  30. 30.
    K. de Moel, E. Flikkema, I. Szleifer, and G. Brinke, Europhys. Lett. 42, 407 (1998).CrossRefGoogle Scholar
  31. 31.
    A. N. Semenov and A. R. Khokhlov, Phys.–Usp. 156, 988 (1988).CrossRefGoogle Scholar
  32. 32.
    P. G. de Gennes, J. Chem. Phys. 60, 5030 (1974).CrossRefGoogle Scholar
  33. 33.
    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).Google Scholar
  34. 34.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Univ. Press, New York, 1986).Google Scholar
  35. 35.
    G. K. Batchelor, J. Fluid Mech. 44, 419 (1970).CrossRefGoogle Scholar
  36. 36.
    C.-C. Hsieh and R. G. Larson, J. Rheol. 48, 995 (2004).CrossRefGoogle Scholar
  37. 37.
    I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
  38. 38.
    S. Donets and J.-U. Sommer, J. Phys. Chem. B 122 (1), 392 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institut Charles SadronStrasbourgFrance

Personalised recommendations