Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 228–239 | Cite as

Electrochemical Properties of Supercapacitor Electrodes Based on Polypyrrole and Enzymatically Prepared Cellulose Nanofibers

  • M. A. Smirnov
  • V. K. Vorobiov
  • M. P. Sokolova
  • N. V. Bobrova
  • E. Lahderanta
  • S. Hiltunen
  • A. V. Yakimansky
Article
  • 7 Downloads

Abstract

In this work we present the study of electrochemical properties of the composites based on cellulose nanofibers and a conductive polypyrrole that can be used as an electrode in supercapacitors. Samples have been prepared by two methods: in situ polymerization of pyrrole in the presence of cellulose nanofibers directly on the graphite plate used as a current collector and by precipitation of the dispersion of polypyrrole-cellulose nanofibers prepared ex situ onto the graphite electrode. Higher specific capacitance up to 4.08 F/cm2 (810 F/g) for in situ prepared sample in comparison with 1.87 F/cm2 (371 F/g) for ex situ sample was measured. Investigation with galvanostatic charge-discharge and electrochemical impedance spectroscopy revealed that the sample prepared by precipitation of dispersion demonstrate higher double-layer capacitance, electrode prepared via in situ polymerization demonstrates higher pseudocapacitance. Analysis of electrochemical data with equivalent circuit allows to propose that deviation from ideal capacitance behavior is caused by chemical inhomogeneity of surface of prepared materials rather than by their porous structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Miller and P. Simon, Mater. Sci. 321, 651 (2008).Google Scholar
  2. 2.
    Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, and Y. Tong, Adv. Energy Mater. 6 (24), 1601053 (2016).CrossRefGoogle Scholar
  3. 3.
    H. Cao, N. Wu, Y. Liu, S. Wang, W. Du, and J. Liu, Electrochim. Acta 225, 605 (2017).CrossRefGoogle Scholar
  4. 4.
    C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu, and X. Xu, Nanomaterials 7, 1 (2017).Google Scholar
  5. 5.
    I. Y. Y. Bu and R. Huang, Ceram. Int. 43 (1), 45 (2017).CrossRefGoogle Scholar
  6. 6.
    G. P. Ojha, B. Pant, S. J. Park, M. Park, and H. Y. Kim, J. Colloid Interface Sci. 494, 338 (2017).CrossRefGoogle Scholar
  7. 7.
    A. K. Das, S. Sahoo, P. Arunachalam, S. Zhang, and J.-J. Shim, RSC Adv. 6 (108), 107057 (2016).CrossRefGoogle Scholar
  8. 8.
    I. Shown, A. Ganguly, L.-C. Chen, and K.-H. Chen, Energy Sci. Eng. 3 (1), 2 (2015).CrossRefGoogle Scholar
  9. 9.
    Q. Meng, K. Cai, Y. Chen, and L. Chen, Nano Energy 36, 268 (2017).CrossRefGoogle Scholar
  10. 10.
    Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, and C. Zhi, Nano Energy 22, 422 (2016).CrossRefGoogle Scholar
  11. 11.
    P. V. Vlasov, M. A. Smirnov, I. Y. Dmitriev, N. N. Saprykina, and G. K. Elyashevich, Russ. J. Appl. Chem. 87 (4), 491 (2014).CrossRefGoogle Scholar
  12. 12.
    M. A. Smirnov, M. P. Sokolova, P. Geydt, N. N. Smirnov, N. V. Bobrova, A. M. Toikka, and E. Lahderanta, Mater. Lett. 199, 192 (2017).CrossRefGoogle Scholar
  13. 13.
    B. Wang, X. Liu, Q. Liu, J. Chen, H. Jiang, Y. Wang, K. Liu, M. Li, and D. Wang, J. Alloys Compd. 715, 137 (2017).CrossRefGoogle Scholar
  14. 14.
    H. Hu, S. Liu, M. Hanif, S. Chen, and H. Hou, J. Power Sources 268, 451 (2014).CrossRefGoogle Scholar
  15. 15.
    V. Sahu, R. B. Marichi, G. Singh, and R. K. Sharma, Electrochim. Acta 240, 146 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Li, W. Lu, Y. Yan, and T.-W. Chou, J. Mater. Chem. A 5 (22), 11271 (2017).CrossRefGoogle Scholar
  17. 17.
    P. Pattananuwat and D. Aht-ong, Electrochim. Acta 224, 149 (2017).CrossRefGoogle Scholar
  18. 18.
    M. A. Smirnov, M. P. Sokolova, N. V. Bobrova, A. M. Toikka, P. Morganti, and E. Lahderanta, J. Energy Chem. 27 (3), 843 (2018).CrossRefGoogle Scholar
  19. 19.
    J. Luo, W. Zhong, Y. Zou, C. Xiong, and W. Yang, J. Power Sources 319, 73 (2016).CrossRefGoogle Scholar
  20. 20.
    C. Bulin, H. Yu, X. Ge, G. Xin, R. Xing, R. Li, and B. Zhang, J. Mater. Sci. 52 (10), 5871 (2017).CrossRefGoogle Scholar
  21. 21.
    S. Yu, D. Liu, S. Zhao, B. Bao, C. Jin, and W. Huang, RSC Adv. 5, 30943 (2015).CrossRefGoogle Scholar
  22. 22.
    P. Asen and S. Shahrokhian, J. Phys. Chem. C 121 (12), 6508 (2017).CrossRefGoogle Scholar
  23. 23.
    S. Peng, L. Fan, C. Wei, X. Liu, H. Zhang, W. Xu, and J. Xu, Carbohydr. Polym. 157, 344 (2017).CrossRefGoogle Scholar
  24. 24.
    M. A. Smirnov, M. P. Sokolova, N. V. Bobrova, I. A. Kasatkin, E. Lahderanta, and G. K. Elyashevich, J. Power Sources 304, 102 (2016).CrossRefGoogle Scholar
  25. 25.
    T. Y. Dai, R. Tang, X. X. Yue, L. Xu, and Y. Lu, Chin. J. Polym. Sci., Eng. Ed. 33 (7), 1018 (2015).CrossRefGoogle Scholar
  26. 26.
    J. Mu, G. Ma, H. Peng, J. Li, K. Sun, and Z. Lei, J. Power Sources 242, 797 (2013).CrossRefGoogle Scholar
  27. 27.
    X. Sun, Q. Li, and Y. Mao, Electrochim. Acta 174, 563 (2015).CrossRefGoogle Scholar
  28. 28.
    W. Wu, Y. Li, L. Yang, Y. Ma, and X. Yan, Synth. Met. 193, 48 (2014).CrossRefGoogle Scholar
  29. 29.
    J. Xu, L. Zhu, Z. Bai, G. Liang, L. Liu, D. Fang, and W. Xu, Org. Electron. 14 (12), 711 (2013).CrossRefGoogle Scholar
  30. 30.
    P. Zhang, Z. Liu, Y. Liu, H. Fan, Y. Jiao, and B. Chen, Electrochim. Acta 184, 1 (2015).CrossRefGoogle Scholar
  31. 31.
    S. Peng, L. Fan, W. Rao, Z. Bai, W. Xu, and J. Xu, J. Mater. Sci. 52 (4), 1930 (2017).CrossRefGoogle Scholar
  32. 32.
    L. Ma, R. Liu, H. Niu, L. Xing, L. Liu, and Y. Huang, ACS Appl. Mater. Interfaces 8, 33608 (2016).CrossRefGoogle Scholar
  33. 33.
    F. Lai, Y.-E. Miao, L. Zuo, Y. Zhang, and T. Liu, ChemNanoMat 2, 212 (2016).CrossRefGoogle Scholar
  34. 34.
    X. Du, Z. Zhang, W. Liu, and Y. Deng, Nano Energy 35, 299 (2017).CrossRefGoogle Scholar
  35. 35.
    Q. Tarrés, M. Delgado-Aguilar, M. A. Pèlach, I. González, S. Boufi, and P. Mutjé, Cellulose 23 (6), 3939 (2016).CrossRefGoogle Scholar
  36. 36.
    M. A. Smirnov, I. S. Kuryndin, L. N. Nikitin, A. V. Sidorovich, Y. N. Sazanov, O. V. Kudasheva, V. Bukošek, A. R. Khokhlov, and G. K. Elyashevich, Russ. J. Appl. Chem. 78 (12), 1993(2005).CrossRefGoogle Scholar
  37. 37.
    O. A. Andreeva, L. A. Burkova, M. A. Smirnov, and G. K. El’yashevich, Polym. Sci., Ser. B 48 (6), 331 (2006).CrossRefGoogle Scholar
  38. 38.
    M. A. Smirnov, N. V. Bobrova, Z. Pientka, and G. K. Elyashevich, Polym. Sci., Ser. B 47 (7–8), 215(2005).Google Scholar
  39. 39.
    D. Gu, C. Ding, Y. Qin, H. Jiang, L. Wang, and L. Shen, Electrochim. Acta 245, 146 (2017).CrossRefGoogle Scholar
  40. 40.
    Y. M. Volfkovich, A. Sergeev, T. K. Zolotova, S. D. Afanasiev, O. N. Efimov, and E. P. Krinichnaya, Electrochim. Acta 44 (10), 1543 (1999).CrossRefGoogle Scholar
  41. 41.
    S. Leinad Gnana Lissy, S. Pitchumani, and K. Jayakumar, Mater. Chem. Phys. 76 (2), 143 (2002).CrossRefGoogle Scholar
  42. 42.
    H. Zhou, H. Chen, S. Luo, G. Lu, W. Wei, and Y. Kuang, J. Solid State Electrochem. 9 (8), 574 (2005).CrossRefGoogle Scholar
  43. 43.
    M. C. E. Bandeira and R. Holze, Microchim. Acta 156 (1–2), 125 (2006).CrossRefGoogle Scholar
  44. 44.
    H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, J. Power Sources 190 (2), 578 (2009).CrossRefGoogle Scholar
  45. 45.
    M. Omastova, M. Trchova, J. Kovárová, and J. Stejskal, Synth. Met. 138 (3), 447 (2003).CrossRefGoogle Scholar
  46. 46.
    R. G. Davidson and T. G. Turner, Synth. Met. 72 (2), 121 (1995).CrossRefGoogle Scholar
  47. 47.
    R. Murugan, S. Mohan, and A. Bigotto, J. Korean Phys. Soc. 32 (4), 505 (1998).Google Scholar
  48. 48.
    N. Wellner, P. S. Belton, and A. S. Tatham, Biochem. J. 319 (3), 741 (1996).CrossRefGoogle Scholar
  49. 49.
    S. Ardizzone, G. Fregonara, and S. Trasatti, Electrochim. Acta 35 (1), 263 (1990).CrossRefGoogle Scholar
  50. 50.
    J. Shao, X. Zhou, Q. Liu, R. Zou, W. Li, J. Yang, and J. Hu, J. Mater. Chem. A 3 (11), 6168 (2015).CrossRefGoogle Scholar
  51. 51.
    S. M. Li, S. Y. Yang, Y. S. Wang, H. P. Tsai, H. W. Tien, S. T. Hsiao, and C. C. Hu, J. Power Sources 278, 218 (2015).CrossRefGoogle Scholar
  52. 52.
    X. Zeng, B. Yang, X. Li, R. Li, and R. Yu, Mater. Des. 101, 35 (2016).CrossRefGoogle Scholar
  53. 53.
    Y. Xu and Y. Zhang, Mater. Lett. 139, 145 (2015).CrossRefGoogle Scholar
  54. 54.
    S. Peng, L. Fan, C. Wei, X. Liu, H. Zhang, W. Xu, and J. Xu, Carbohydr. Polym. 157, 344 (2017).CrossRefGoogle Scholar
  55. 55.
    B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Electrochim. Acta 55 (21), 6218 (2010).CrossRefGoogle Scholar
  56. 56.
    A. Allagui, T. J. Freeborn, A. S. Elwakil, and B. J. Maundy, Sci. Rep. 6, 38568 (2016).CrossRefGoogle Scholar
  57. 57.
    P. Cördoba-Torres, T. J. Mesquita, and R. P. Nogueira, J. Phys. Chem. C 119, 4136 (2015).CrossRefGoogle Scholar
  58. 58.
    Z. Kerner and T. Pajkossy, J. Electroanal. Chem. 448 (1), 139 (1998).CrossRefGoogle Scholar
  59. 59.
    Z. Kerner and T. Pajkossy, Electrochim. Acta 46, 207 (2000).CrossRefGoogle Scholar
  60. 60.
    G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach, and J. H. Sluyters, J. Electroanal. Chem. 176, 275 (1984).CrossRefGoogle Scholar
  61. 61.
    C. H. Kim, S. I. Pyun, and J. H. Kim, Electrochim. Acta 48, 3455 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Smirnov
    • 1
    • 2
  • V. K. Vorobiov
    • 2
  • M. P. Sokolova
    • 3
  • N. V. Bobrova
    • 1
  • E. Lahderanta
    • 4
  • S. Hiltunen
    • 5
  • A. V. Yakimansky
    • 1
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Saint Petersburg State UniversityPeterhof, St. PetersburgRussia
  4. 4.Department of PhysicsLappeenranta University of TechnologyLappeenrantaFinland
  5. 5.School of Energy Systems, Group of Packaging TechnologyLappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations