Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 3–17 | Cite as

Theoretical Study of Adsorption of Random and Regular Heteropolymers Using the Generating Functions Approach

  • A. A. PolotskyEmail author
Article

Abstract

Adsorption of single macromolecules of random and regular heterpolymers was studied by the generating functions approach (or the method of grand canonical ensemble). Adsorption of random copolymers characterized by a sequence of monomer units set as a first order Markov chain was considered using the approximation of annealed disorder and constrained annealed disorder (the Morita approximation). It was shown that use of the Morita approximation makes it possible to describe accurately the adsorption of random copolymer with a fixed (quenched) sequence of units. Adsorption of periodic heteropolymers can be described by representing the periodic sequence as a first order Markov chain with circulant transition probability matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. L. Frisch, R. Simha, and F. R. Eirich, J. Chem. Phys. 21 (2), 365 (1953).Google Scholar
  2. 2.
    R. Simha, H. L. Frisch, and F. R. Eirich, J. Phys. Chem. 57 (6), 584 (1953).Google Scholar
  3. 3.
    H. L. Frisch and R. Simha, J. Phys. Chem. 58 (6), 507 (1954).Google Scholar
  4. 4.
    A. Silberberg, J. Phys. Chem. 66 (10), 1872 (1962).Google Scholar
  5. 5.
    R.-J. Roe, Proc. Natl. Acad. Sci. U. S. A. 53 (1), 50 (1965).Google Scholar
  6. 6.
    E. A. DiMarzio, J. Chem. Phys. 42 (6), 2101 (1965).Google Scholar
  7. 7.
    E. A. DiMarzio and F. L. McCrackin, J. Chem. Phys. 43 (2), 539 (1965).Google Scholar
  8. 8.
    C. A. J. Hoeve, E. A. DiMarzio, and P. Peyser, J. Chem. Phys. 42 (7), 2558 (1965).Google Scholar
  9. 9.
    R. J. Rubin, J. Chem. Phys. 43 (7), 2392 (1965).Google Scholar
  10. 10.
    S. P. Obukhov, Zh. Eksp. Teor. Fiz. 93 (6), 1973 (1987).Google Scholar
  11. 11.
    J.-F. Joanny, J. Phys. II 4 (8), 1281 (1994).Google Scholar
  12. 12.
    L. Gutman and A. K. Chakraborty, J. Chem. Phys. 103 (24), 10733 (1995).Google Scholar
  13. 13.
    S. Stepanow and A. L. Chudnowsky, J. Phys. A: Math. Gen. 35 (19), 4229 (2002).Google Scholar
  14. 14.
    A. Polotsky, F. Schmid, and A. Degenhard, J. Chem. Phys. 120 (13), 6246 (2004).Google Scholar
  15. 15.
    T. Garel, D. A. Huse, S. Leibler, and H. Orland, Europhys. Lett. 8 (1), 9 (1989).Google Scholar
  16. 16.
    A. Grosberg, S. Izrailev, and S. Nechaev, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interscip. Top. 50 (3), 1912 (1994).Google Scholar
  17. 17.
    S. Stepanow, J.-U. Sommer, and I. Ya. Erukhimovich, Phys. Rev. Lett. 81 (20), 4412 (1998).Google Scholar
  18. 18.
    Z. Y. Chen, J. Chem. Phys. 112 (19), 8665 (2000).Google Scholar
  19. 19.
    N. A. Denesyuk and I. Ya. Erukhimovich, J. Chem. Phys. 113 (9), 3894 (2000).Google Scholar
  20. 20.
    C. Monthus, Eur. Phys. J. B 3 (1), 111 (2000).Google Scholar
  21. 21.
    A. Yu. Grosberg and E. I. Shakhnovich, Sov. Phys. JETP 64, 1284 (1986).Google Scholar
  22. 22.
    A. Naidenov and S. Nechaev, J. Phys. A: Math. Gen. 34 (28), 5625 (2001).Google Scholar
  23. 23.
    T. M. Birshtein, E. B. Zhulina, and A. M. Skvortsov, Vysokomol. Soedin., Ser. A 23 (2), 304 (1981).Google Scholar
  24. 24.
    J.-U. Sommer and M. Daoud, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interscip. Top. 53, 905 (1996).Google Scholar
  25. 25.
    A. Corsi, A. Milchev, V. G. Rostiashvili, and T. A. Vilgis, J. Chem. Phys. 122 (9), 094807 (2005).Google Scholar
  26. 26.
    B. Derrida, V. Hakim, and J. Vannimenus, J. Stat. Phys. 66 (5), 1189 (1992).Google Scholar
  27. 27.
    S. Nechaev and Y.-C. Zhang, Phys. Rev. Lett. 74 (10), 1815 (1995).Google Scholar
  28. 28.
    D. M. Gangardt and S. K. Nechaev, J. Stat. Phys. 130 (3), 483 (2008).Google Scholar
  29. 29.
    A. M. Skvortsov, T. M. Birshtein, and E. B. Zhulina, Vysokomol. Soedin., Ser. A 18 (9), 1993 (1976).Google Scholar
  30. 30.
    A. M. Skvortsov, T. M. Birshtein, E. B. Zhulina, and A. A. Gorbunov, Vysokomol. Soedin., Ser. A 18 (9), 2097 (1976).Google Scholar
  31. 31.
    A. M. Skvortsov and T. M. Birshtein, Vysokomol. Soedin., Ser. A 18 (11), 2479 (1976).Google Scholar
  32. 32.
    A. M. Skvortsov, A. A. Gorbunov, E. B. Zhulina, and T. M. Birshtein, Vysokomol. Soedin., Ser. A 20 (2), 278 (1978).Google Scholar
  33. 33.
    T. M. Birshtein, E. B. Zhulina, and A. M. Skvortsov, Biopolymers 18 (5), 1171 (1979).Google Scholar
  34. 34.
    T. M. Birshtein, Macromolecules 12 (4), 715 (1979).Google Scholar
  35. 35.
    E. B. Zhulina, T. M. Birshtein, and A. M. Skvortsov, Biopolymers 19 (4), 805 (1980).Google Scholar
  36. 36.
    T. M. Birshtein, V. N. Gridnev, and A. M. Skvortsov, Vysokomol. Soedin., Ser. A 23 (2), 297 (1981).Google Scholar
  37. 37.
    T. M. Birshtein, Vysokomol. Soedin., Ser. A 24 (9), 1828 (1982).Google Scholar
  38. 38.
    E. B. Zhulina, A. A. Gorbunov, T. M. Birshtein, and A. M. Skvortsov, Biopolymers 21 (6), 1021 (1982).Google Scholar
  39. 39.
    T. M. Birshtein, Macromolecules 16 (1), 45 (1983).Google Scholar
  40. 40.
    T. M. Birshtein, O. V. Borisov, A. K. Karaev, and E. B. Zhulina, Biopolymers 24 (11), P. 2057 (1985).Google Scholar
  41. 41.
    T. M. Birshtein and O. V. Borisov, Vysokomol. Soedin., Ser. A 28 (11), 2265 (1986).Google Scholar
  42. 42.
    T. M. Birshtein and S. V. Buldyrev, Vysokomol. Soedin., Ser. A 31 (1), 104 (1989).Google Scholar
  43. 43.
    T. M. Birshtein and O. V. Borisov, Polymer 32 (5), 916 (1991).Google Scholar
  44. 44.
    T. M. Birshtein and O. V. Borisov, Polymer 32 (5), 923 (1991).Google Scholar
  45. 45.
    E. B. Zhulina and T. M. Birshtein, Vysokomol. Soedin., Ser. A 29 (11), 863 (1987).Google Scholar
  46. 46.
    S. V. Buldyrev and T. M. Birshtein, Vysokomol. Soedin., Ser. B 30 (5), 392 (1988).Google Scholar
  47. 47.
    H. S. Wilf, in Generatingfunctionology (Acad. Press, Boston, 1994).Google Scholar
  48. 48.
    S. K. Lando, Lectures on Generating Functions (MTsNMO, Moscow, 2007) [in Russian].Google Scholar
  49. 49.
    S. Lifson, J. Chem. Phys. 40 (12), 3705 (1964).Google Scholar
  50. 50.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].Google Scholar
  51. 51.
    D. Poland and H. A. Scheraga, J. Chem. Phys. 45 (5), 1464 (1966).Google Scholar
  52. 52.
    G. Carri and M. Muthukumar, Phys. Rev. Lett. 82 (26), 5405 (1999).Google Scholar
  53. 53.
    M. V. Tamm and S. K. Nechaev, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 75, 031904 (2007).Google Scholar
  54. 54.
    A. A. Polotsky, A. Degenhard, and F. Schmid, J. Chem. Phys. 131, 054903 (2009).Google Scholar
  55. 55.
    V. S. Dotsenko, Phys.-Usp. 36 (6), 455 (1993).Google Scholar
  56. 56.
    C. E. Soteros and S. G. Whittington, J. Phys. A.: Math. Gen. 37, 279 (2004).Google Scholar
  57. 57.
    A. Polotsky, A. Degenhard, and F. Schmid, J. Chem. Phys. 121 (10), 4853 (2004).Google Scholar
  58. 58.
    A. Yu. Grosberg, Phys.-Usp. 40, 125 (1997).Google Scholar
  59. 59.
    N. Yoshinaga, E. Kats, and A. Halperin, Macromolecules 41 (20), 7744 (2008).Google Scholar
  60. 60.
    F. R. Gantmacher, in The Theory of Matrices (Chelsea, New York, 1959), Vol.1.Google Scholar
  61. 61.
    T. Morita, J. Math. Phys. 5 (10), 1401 (1964).Google Scholar
  62. 62.
    M. Serva and G. Paladin, Phys. Rev. Lett. 70, 105 (1993).Google Scholar
  63. 63.
    M. Pasquini, G. Paladin, and M. Serva, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interscip. Top. 51, 2006 (1995).Google Scholar
  64. 64.
    G. Paladin, M. Pasquini, and M. Serva, J. Phys. I 5 (3), 337 (1995).Google Scholar
  65. 65.
    M. Pasquini and M. Serva, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interscip. Top. 56, 2751 (1997).Google Scholar
  66. 66.
    G. Paladin, M. Pasquini, and M. Serva, Int. J. Mod. Phys.B 9 (4–5), 399 (1995).Google Scholar
  67. 67.
    R. Kuhn, Phys. Rev. Lett. 73, 2268 (1994).Google Scholar
  68. 68.
    G. Mazzeo and R. Kuhn, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interscip. Top. 60, 3823 (1999).Google Scholar
  69. 69.
    G. N. Hayrapetyan, F. Iannelli, J. Lekscha, V. F. Morozov, R. R. Netz, and Y. Sh. Mamasakhlisov, Phys. Rev. Lett. 113, 068101 (2014).Google Scholar
  70. 70.
    A. L. Tsaturyan, Izv. Akad. Nauk Arm., Fiz. 52, 85 (2017).Google Scholar
  71. 71.
    T. Liu and R. Bundschuh, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 061905 (2005).Google Scholar
  72. 72.
    A. Trovato, J. van Mourik, and A. Maritan, Eur. Phys. J. 6, 63 (1998).Google Scholar
  73. 73.
    E. Orlandini, A. Rechnitzer, and S. G. Whittington, J. Phys. A: Math. Gen. 35, 7729 (2002).Google Scholar
  74. 74.
    G. Iliev, A. Rechnitzer, and S. G. Whittington, J. Phys. A: Math. Gen. 38 (6), 1209 (2005).Google Scholar
  75. 75.
    J. Alvarez and C. E. Soteros, J. Math. Chem. 45 (1), 238 (2009).Google Scholar
  76. 76.
    J. Alvarez, E. Orlandini, C. E. Soteros, and S. G. Whittington, J. Phys. A: Math. Gen. 40, 289 (2007).Google Scholar
  77. 77.
    G. Iliev, E. Orlandini, and S. G. Whittington, Eur. Phys. J. B 40, 63 (2004).Google Scholar
  78. 78.
    R. Kuhn, Z. Phys. B: Condens. Matter 100, 231 (1996).Google Scholar
  79. 79.
    A. A. Polotsky, J. Phys. A: Math. Theor. 45 (42), 425004 (2012).Google Scholar
  80. 80.
    A. A. Polotsky, Condens. Matter Phys. 18 (2), 23802 (2015).Google Scholar
  81. 81.
    V. Privman and N. M. Svrakic, in Directed Models of Interfaces, and Clusters: Scaling and Finite-Size Properties. Lecture Notes in Physics (Springer-Verlag, Berlin; Heidelberg, 1989).Google Scholar
  82. 82.
    E. J. van Rensburg, J. Phys. A: Math. Theor. 36 (11), 11 (2003).Google Scholar
  83. 83.
    A. A. Polotsky, J. Phys. A: Math. Theor. 47 (24), 245002 (2014).Google Scholar
  84. 84.
    A. A. Polotsky, J. Phys. A: Math. Theor. 46 (1), 015001 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)St. PetersburgRussia

Personalised recommendations