Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 66–75 | Cite as

Swelling of Planar Polymer Brushes in Solvent Vapors

  • R. A. Gumerov
  • I. I. PotemkinEmail author
Article
  • 21 Downloads

Abstract

The swelling of densely grafted planar homo- and copolymer brushes in solvent vapors was studied by the dissipative particle dynamics method. It is shown that the distribution of the solvent inside the polymer film is inhomogeneous with the explicit maximum at the polymer–vapor interface. The value of the maximum does not depend on the grafting density and is mainly defined by the concentration of solvent vapors. At the same time, the distribution function of the free ends in homopolymer brush swollen in vapors of a good solvent is closer to the respective function in dry (solvent-free) brush: it has a rather narrow maximum at the upper border of the brush. In case of copolymer brushes, the swelling in vapors of a selective solvent can be accompanied by separation, the character of which is defined by the sequence of polymer segments (random or gradient) and also by the mean fraction of the segments of different types. The distribution function of free ends in the copolymer brush is calculated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.-L. Chen, R. Cordero, H. Tran, and C. K. Ober, Macromolecules 50 (11), 4089 (2017).CrossRefGoogle Scholar
  2. 2.
    T. Kreer, Soft Matter 12 (15), 3479 (2016).CrossRefGoogle Scholar
  3. 3.
    S. Liang, N. M. Neisius, and S. Gaan, Prog. Org. Coat. 76 (11), 1642 (2013).CrossRefGoogle Scholar
  4. 4.
    S. P. Adiga and D. W. Brenner, J. Funct. Biomater. 3 (2), 239 (2012).CrossRefGoogle Scholar
  5. 5.
    W. Yang and F. Zhou, Biosurf. Biotribol. 3 (3), 97 (2017).CrossRefGoogle Scholar
  6. 6.
    M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, and J. E. Gautrot, Chem. Rev. 114 (21), 10976 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Alexander, J. Phys. 38 (8), 983 (1977).CrossRefGoogle Scholar
  8. 8.
    P.-G. de Gennes, Macromolecules 13 (5), 1069 (1980).CrossRefGoogle Scholar
  9. 9.
    A. N. Semenov, Sov. Phys. JETP. 61 (4), 733 (1985).Google Scholar
  10. 10.
    S. T. Milner, T. A. Witten, and M. E. Cates, Macromolecules 21 (8), 2610 (1988).CrossRefGoogle Scholar
  11. 11.
    A. M. Skvortsov, I. V. Pavlushkov, A. A. Gorbunov, Ye. B. Zhulina, O. V. Borisov, and V. A. Pryamitsyn, Polym. Sci. U. S. S. R. 30 (8), 1706 (1988).CrossRefGoogle Scholar
  12. 12.
    T. M. Birshtein and Ye. B. Zhulina, Polym. Sci. U. S. S. R. 25 (9), 2165 (1983).CrossRefGoogle Scholar
  13. 13.
    T. M. Birshtein and E. B. Zhulina, Polymer 25 (10), 1453 (1984).CrossRefGoogle Scholar
  14. 14.
    T. M. Birshtein and A. K. Karaev, Polym. Sci. U. S. S. R. 29 (9), 2066 (1987).CrossRefGoogle Scholar
  15. 15.
    T. M. Birshtein and A. K. Karaev, Polym. Sci. U. S. S. R. 30 (5), 1028 (1988).CrossRefGoogle Scholar
  16. 16.
    O. V. Borisov, Ye. B. Zhulina, and T. M. Birshtein Polym. Sci. U. S. S. R. 30 (4), 772 (1988).CrossRefGoogle Scholar
  17. 17.
    T. M. Birshtein, Yu. V. Lyatskaya, and Ye. B. Zhulina, Polym. Sci. U. S. S. R. 32 (8), 1626 (1990).CrossRefGoogle Scholar
  18. 18.
    E. B. Zhulina, O. V. Borisov, V. A. Pryamitsyn, and T. M. Birshtein, Macromolecules 24 (1), 140 (1991).CrossRefGoogle Scholar
  19. 19.
    T. M. Birshtein and Yu. V. Lyatskaya, Macromolecules 27 (5), 1256 (1994).CrossRefGoogle Scholar
  20. 20.
    O. V. Borisov, E. B. Zhulina, and T. M. Birshtein, Macromolecules 27 (17), 4795 (1994).CrossRefGoogle Scholar
  21. 21.
    E. B. Zhulina, T. M. Birshtein, and O. V. Borisov, Macromolecules 28 (5), 1491 (1995).CrossRefGoogle Scholar
  22. 22.
    Yu. V. Lyatskaya, F. A. M. Leermakers, G. J. Fleer, E. B. Zhulina, and T. M. Birshtein, Macromolecules 28 (10), 3562 (1995).CrossRefGoogle Scholar
  23. 23.
    A. A. Mercurieva, F. A. M. Leermakers, T. M. Birshtein, G. J. Fleer, and E. B. Zhulina, Macromolecules 33 (3), 1072 (2000).CrossRefGoogle Scholar
  24. 24.
    A. A. Polotsky, F. A. M. Leermakers, E. B. Zhulina, and T. M. Birshtein, Macromolecules 45 (17), 7260 (2012).CrossRefGoogle Scholar
  25. 25.
    A. A. Polotsky, F. A. M. Leermakers, and T. M. Birshtein, Macromolecules 48 (7), 2263 (2015).CrossRefGoogle Scholar
  26. 26.
    M. Murat and G. S. Grest, Macromolecules 22 (10), 4054 (1989).CrossRefGoogle Scholar
  27. 27.
    G. S. Grest and M. Murat, Macromolecules 26 (12), 3108 (1993).CrossRefGoogle Scholar
  28. 28.
    Y. N. Kaznessis, D. A. Hill, and E. J. Maginn, Macromolecules 31 (9), 3116 (1998).CrossRefGoogle Scholar
  29. 29.
    G.-L. He, H. Merlitz, J.-U. Sommer, and C.-X. Wu, Macromolecules 40 (18), 6721 (2007).CrossRefGoogle Scholar
  30. 30.
    Y. Yin, P. Sun, B. Li, T. Chen, Q. Jin, D. Ding, and A.-C. Shi, Macromolecules 40 (14), 5161 (2007).CrossRefGoogle Scholar
  31. 31.
    O. A. Guskova and C. Seidel, Macromolecules 44 (3), 671 (2011).CrossRefGoogle Scholar
  32. 32.
    A. A. Rudov, P. G. Khalatur, and I. I. Potemkin, Macromolecules 45 (11), 4870 (2012).CrossRefGoogle Scholar
  33. 33.
    R. Jiang, B. Li, Zh. Wang, Y. Yin, and A.-C. Shi, Macromolecules 45 (11), 4920 (2012).CrossRefGoogle Scholar
  34. 34.
    J. Cheng, A. Vishnyakov, and A. V. Neimark, Langmuir 30 (43), 12932 (2014).CrossRefGoogle Scholar
  35. 35.
    D. Posselt, J. Zhang, D.-M. Smilgies, A. V. Berezkin, I. I. Potemkin, and C. M. Papadakis, Prog. Polym. Sci. 66, 80 (2017).CrossRefGoogle Scholar
  36. 36.
    A. Stenbock-Fermor, A. A. Rudov, R. A. Gumerov, L. A. Tsarkova, A. Böker, M. Möller, and I. I. Potemkin, ACS Macro Lett. 3 (8), 803 (2014).CrossRefGoogle Scholar
  37. 37.
    A. V. Berezkin, C. M. Papadakis, and I. I. Potemkin, Macromolecules 49 (1), 415 (2016).CrossRefGoogle Scholar
  38. 38.
    C. J. Galvin, M. D. Dimitriou, S. K. Satija, and J. Genzer, J. Am. Chem. Soc. 136 (36), 12737 (2014).CrossRefGoogle Scholar
  39. 39.
    C. J. Galvin and J. Genzer, Macromolecules 49 (11), 4316 (2016).CrossRefGoogle Scholar
  40. 40.
    L. Sun, B. Akgun, S. Narayanan, Zh. Jiang, and M. D. Foster, Macromolecules 49 (19), 7308 (2016).CrossRefGoogle Scholar
  41. 41.
    I. W. Hamley, Prog. Polym. Sci. 34 (11), 1161 (2009).CrossRefGoogle Scholar
  42. 42.
    L. A. Strickland, C. K. Hall, and J. Genzer, Langmuir 26 (11), 8810 (2010).CrossRefGoogle Scholar
  43. 43.
    S. V. Venev and I. I. Potemkin, Soft Matter 10 (34), 6442 (2014).CrossRefGoogle Scholar
  44. 44.
    E. B. Zhulina, C. Singh, and A. C. Balazs, Macromolecules 29 (25), 8254 (1996).CrossRefGoogle Scholar
  45. 45.
    P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19 (3), 155 (1992).CrossRefGoogle Scholar
  46. 46.
    P. Español and P. Warren, Europhys. Lett. 30 (4), 191 (1995).CrossRefGoogle Scholar
  47. 47.
    R. D. Groot and P. B. Warren, J. Chem. Phys. 107 (11), 4423 (1997).CrossRefGoogle Scholar
  48. 48.
    A. A. Rudov, E. S. Patyukova, I. V. Neratova, P. G. Khalatur, D. Posselt, C. M. Papadakis, and I. I. Potemkin, Macromolecules 46 (14), 5786 (2013).CrossRefGoogle Scholar
  49. 49.
    I. Pagonabarraga, M. H. J. Hagen, and D. Frenkel, Europhys. Lett. 42 (4), 377 (1998).CrossRefGoogle Scholar
  50. 50.
    Y. Chen, H. Chen, M. Feng, and Y. Dong, Eur. Polym. J. 85, 489 (2016).CrossRefGoogle Scholar
  51. 51.
    C. J. Galvin and J. Genzer, Prog. Polym. Sci. 37 (7), 871 (2012).CrossRefGoogle Scholar
  52. 52.
    L. C. H. Moh, M. D. Losego, and P. V. Braun, Langmuir 27 (7), 3698 (2011).CrossRefGoogle Scholar
  53. 53.
    P. Español and P. B. Warren, J. Chem. Phys. 146 (15), 150901 (2017).CrossRefGoogle Scholar
  54. 54.
    K. E. Polovnikov, R. A. Gumerov, and I. I. Potemkin, Macromolecules 49 (17), 6599 (2016).CrossRefGoogle Scholar
  55. 55.
    H. Morita, T. Ozawa, N. Kobayashi, H. Fukunaga, and M. Doi, J. Soc. Rheol., Jpn. 36 (2), 93 (2008).CrossRefGoogle Scholar
  56. 56.
    I. V. Neratova, A. S. Pavlov, and P. G. Khalatur, Polym. Sci., Ser. A 52 (9), 959 (2010).CrossRefGoogle Scholar
  57. 57.
    A. Mourran, Y. Wu, R. A. Gumerov, A. A. Rudov, I. I. Potemkin, A. Pich, and M. Möller, Langmuir 32 (3), 723 (2016).CrossRefGoogle Scholar
  58. 58.
    R. A. Gumerov, A. M. Rumyantsev, A. A. Rudov, A. Pich, W. Richtering, M. Möller, and I. I. Potemkin, ACS Macro Lett. 5 (5), 612 (2016).CrossRefGoogle Scholar
  59. 59.
    A. M. Rumyantsev, R. A. Gumerov, and I. I. Potemkin, Soft Matter 12 (32), 6799 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Physics DepartmentMoscow State UniversityMoscowRussia
  2. 2.National Research South Ural State UniversityChelyabinskRussia

Personalised recommendations