Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 148–159 | Cite as

Models of the Conformational Behavior of Polymers in Mixed Solvents

  • Yu. A. Budkov
  • A. L. Kolesnikov
Article
  • 33 Downloads

Abstract

Theoretical models of the conformational behavior of flexible polymer chains in mixed solvents enunciated in the world literature during the last decade are critically reviewed. Models describing different mechanisms of coil-to-globule transitions in a good solvent induced by cosolvent addition are highlighted. Special attention is given to the analysis of theoretical approaches to describing the collapse of polymer chains in binary mixtures of good solvents. The review addresses researchers engaged in polymer physics and chemistry and materials scientists involved in the design of smart polymers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Y. Galaev and B. Mattiasson, Trends Biotechnol. 17, 335 (1999).CrossRefGoogle Scholar
  2. 2.
    P. Bawa, V. Pillay, Y. E. Choonara, and L. C. Toit, Biomed. Mater. 4 (2009).Google Scholar
  3. 3.
    A. Bajpai, S. K. Shukla, S. Bhanu, and S. Kankane, Prog. Polym. Sci. 33, 1088 (2008).CrossRefGoogle Scholar
  4. 4.
    A. Kumar, A. Srivastava, I. Y. Galaev, and B. Mattiasson, Prog. Polym. Sci. 32, 1205 (2007).CrossRefGoogle Scholar
  5. 5.
    P. Bawa, V. Pillay, Y. E. Choonara, and L. C. Toit, Biomed. Mater. 4 (2009).Google Scholar
  6. 6.
    S. D. Fitzpatrick, L. E. Fitzpatrick, A. Thakur, M. A. J. Mazumder, and H. Sheardown, Expert Rev. Med. Devices 9, 339 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Kost and R. Langer, Adv. Drug Delivery Rev. 46, 125 (2001).CrossRefGoogle Scholar
  8. 8.
    R. Gopalakrishnan, A. I. Frolov, L. Knerr, W. J. Drury, and E. Valeur, J. Med. Chem. 59, 9599 (2016).CrossRefGoogle Scholar
  9. 9.
    Z. Suo, Acta Mech. Solida Sin. 23, 549 (2010).CrossRefGoogle Scholar
  10. 10.
    S. Chaterji, I. K. Kwon, and K. Park, Prog. Polym. Sci. 32, 1083 (2007).CrossRefGoogle Scholar
  11. 11.
    A. Kumar, A. Srivastava, I. Yu. Galaev, and B. Mattiasson, Prog. Polym. Sci. 32, 1205 (2007).CrossRefGoogle Scholar
  12. 12.
    L. Y. Chu, R. Xie, X. J. Ju, and W. Wang, Smart Hydrogel Functional Materials (Chem. Industry Press, Beijing, 2013).CrossRefGoogle Scholar
  13. 13.
    W. Richtering, “Smart Colloidal Materials,” in Progress in Colloid and Polymer Science, Ed. By F. Kremer and W. Richtering (Springer, Berlin; Heidelberg; New York, 2006), Vol.133.Google Scholar
  14. 14.
    G. Haran, Curr. Opin. Struct. Biol. 22, 14 (2012).CrossRefGoogle Scholar
  15. 15.
    G. Ziv, D. Thirumalai, and G. Haran, Phys. Chem. Chem. Phys. 11, 83 (2009).CrossRefGoogle Scholar
  16. 16.
    Functional Thin Films and Nanostructures for Sensors, Ed. by A. Zribi and J. Fortin (Springer, New York, 2009).Google Scholar
  17. 17.
    Y. Yu, R. A. L. de la Cruz, B. D. Kieviet, H. Gojzewski, A. Pons, G. J. Vancso, and S. de Beer, Nanoscale 9, 1670 (2017).CrossRefGoogle Scholar
  18. 18.
    R. Dias and B. Lindman, DNA Interactions with Polymers and Surfactants (Wiley, Hoboken, 2008).CrossRefGoogle Scholar
  19. 19.
    P. G. Koutsoukos, “Trends in Colloid and Interface Science XV,” in Progress in Colloid and Polymer Science, Ed. by F. Kremer and G. Lagaly (Springer, Berlin, 2001), Vol.118.Google Scholar
  20. 20.
    V. B. Teif and K. Bohinc, Prog. Biophys. Mol. Biol. 105, 208 (2011).CrossRefGoogle Scholar
  21. 21.
    W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, and V. A. Parsegian, Phys. Today 53, 38 (2000).CrossRefGoogle Scholar
  22. 22.
    V. V. Vasilevskaya, A. R. Khokhlov, Y. Matsuzawa, and K. Yoshikawa, J. Chem. Phys. 102, 6595 (1995).CrossRefGoogle Scholar
  23. 23.
    Y. T. Maeda, T. Tlusty, and A. Libchaber, Proc. Natl. Acad. Sci. U. S. A. 109, 17972 (2012).CrossRefGoogle Scholar
  24. 24.
    I. M. Lifshitz, Sov. Phys. JETP 28, 55 (1975).Google Scholar
  25. 25.
    M. A. Moore, J. Phys. A: Math. Gen. 10, 305 (1977).CrossRefGoogle Scholar
  26. 26.
    T. M. Birshtein and V. A. Pryamitsyn, Macromolecules 24, 1554 (1991).CrossRefGoogle Scholar
  27. 27.
    E. B. Zhulina, O. V. Borisov, V. A. Pryamitsyn, and T. M. Birshtein, Macromolecules 24, 140 (1991).CrossRefGoogle Scholar
  28. 28.
    Ye. B. Zhulina, O. V. Borisov, and T. M. Birshtein, Polym. Sci. U. S. S. R. 30 (4), 780 (1988).CrossRefGoogle Scholar
  29. 29.
    T. M. Birshtein and V. A. Pryamitsyn, Polym. Sci. U. S. S. R. 29, 2039 (1987).CrossRefGoogle Scholar
  30. 30.
    A. Yu. Grosberg and D. V. Kuznetsov, Macromolecules 25, 1970 (1992).CrossRefGoogle Scholar
  31. 31.
    P. G. de Gennes, J. Phys. Lett. 36, 55 (1975).CrossRefGoogle Scholar
  32. 32.
    I. M. Lifshitz and A. Yu. Grosberg, Sov. Phys. JETP 38, 1198 (1974).Google Scholar
  33. 33.
    M. Muthukumar, J. Chem. Phys. 81, 6272 (1984).CrossRefGoogle Scholar
  34. 34.
    I. C. Sanchez, Macromolecules 12, 980 (1979).CrossRefGoogle Scholar
  35. 35.
    A. R. Khokhlov, Phys. A (Amsterdam, Neth.) 105, 357 (1981).CrossRefGoogle Scholar
  36. 36.
    A. L. Kholodenko and K. F. Freed, J. Phys. A: Math. Gen. 17, 2703 (1984).CrossRefGoogle Scholar
  37. 37.
    R. P. Sear, J. Chem. Phys. 107, 18 (1997).CrossRefGoogle Scholar
  38. 38.
    A. Matsuyama and F. Tanaka, J. Chem. Phys. 94, 781 (1991).CrossRefGoogle Scholar
  39. 39.
    S. Bekiranov, R. Bruinsma, and P. Pincus, Europhys. Lett. 24 (3), 183 (1993).CrossRefGoogle Scholar
  40. 40.
    M. V. Tamm and I. Ya. Erukhimovich, Polym. Sci., Ser. A 44, 196 (2002).Google Scholar
  41. 41.
    Yu. A. Budkov, I. I. Vyalov, A. L. Kolesnikov, N. Georgi, G. N. Chuev, and M. G. Kiselev, J. Chem. Phys. 141, 204904 (2014).CrossRefGoogle Scholar
  42. 42.
    Yu. A. Budkov, A. L. Kolesnikov, N. Georgi, and M. G. Kiselev, Europhys. Lett. 109, 36005 (2015).CrossRefGoogle Scholar
  43. 43.
    A. L. Kolesnikov, Yu. A. Budkov, E. Basharova, and M. G. Kiselev, Soft Matter 13, 4363 (2017).CrossRefGoogle Scholar
  44. 44.
    Yu. A. Budkov and A. L. Kolesnikov, Eur. Phys. J. E: Soft Matter Biol. Phys. 39, 110 (2016).CrossRefGoogle Scholar
  45. 45.
    Yu. A. Budkov, A. L. Kolesnikov, and M. G. Kiselev, J. Chem. Phys. 143, 201102 (2015).CrossRefGoogle Scholar
  46. 46.
    Yu. A. Budkov, N. N. Kalikin, and A. L. Kolesnikov, Eur. Phys. J. E: Soft Matter Biol. Phys. 40, 47 (2017).CrossRefGoogle Scholar
  47. 47.
    Yu. D. Gordievskaya, Yu. A. Budkov, and E. Y. Kramarenko, Soft Matter 14, 3232 (2018).CrossRefGoogle Scholar
  48. 48.
    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).Google Scholar
  49. 49.
    J. dez Cloizeaux and G. Jannink, Polymers in Solution. Their Modelling and Structure (Clarendon Press, Oxford, 1990).Google Scholar
  50. 50.
    A. Y. Grosberg and A. R. Khokhlov, in Statistical Physics of Macromolecules (AIP Press, Woodbury, 1994).Google Scholar
  51. 51.
    T. L. Hill, in An Introduction to Statistical Thermodynamics (Courier Dover Publ., Mineola, 1960).Google Scholar
  52. 52.
    D. R. Batchelor, D. Paschek, and A. E. Garcia, J. Am. Chem. Soc. 132, 2338 (2010).CrossRefGoogle Scholar
  53. 53.
    J. D. Canchi, A. Olteanu, A. Tripathy, and G. J. Pielak, J. Am. Chem. Soc. 126, 1959 (2004).Google Scholar
  54. 54.
    D. R. Canchi and A. E. Garcia, Annu. Rev. Phys. Chem. 64, 273 (2013).CrossRefGoogle Scholar
  55. 55.
    P. Das, Z. Xia, and R. Zhou, Langmuir 29, 4877 (2013).CrossRefGoogle Scholar
  56. 56.
    S. Matysiak and P. Das, Phys. Rev. Lett. 111, 058103 (2013).CrossRefGoogle Scholar
  57. 57.
    Y. Zhang and P. S. Cremer, Annu. Rev. Phys. Chem. 61, 63 (2010).CrossRefGoogle Scholar
  58. 58.
    J. Heyda, A. Muzdalo, and J. Dzubiella, Macromolecules 46, 1231 (2013).CrossRefGoogle Scholar
  59. 59.
    K. Odagiri and K. Seki, J. Chem. Phys. 143, 134903 (2015).CrossRefGoogle Scholar
  60. 60.
    Yu. A. Budkov, A. L. Kolesnikov, N. Georgi, and M. G. Kiselev, J. Chem. Phys. 141, 014902 (2014).CrossRefGoogle Scholar
  61. 61.
    Y. A. Budkov and M. G. Kiselev, J. Phys.: Condens. Matter 30, 043001 (2018).Google Scholar
  62. 62.
    B. A. Wolf and M. M. Willms, Macromol. Chem. 119, 2265 (1978).CrossRefGoogle Scholar
  63. 63.
    H. G. Schild, M. Muthukumar, and D. A. Tirrell, Macromolecules 24, 948 (1991).CrossRefGoogle Scholar
  64. 64.
    F. M. Winnik, M. F. Ottaviani, S. H. Bossmann, M. Garcia-Garibay, and N. J. Turro, Macromolecules 25, 6007 (1992).CrossRefGoogle Scholar
  65. 65.
    G. Zhang and C. Wu, Phys. Rev. Lett. 86, 822 (2001).CrossRefGoogle Scholar
  66. 66.
    J. Walter, J. Sehrt, J. Vrabec, and H. Hasse, J. Phys. Chem. B 116, 5251 (2012).CrossRefGoogle Scholar
  67. 67.
    A. Hiroki, Y. Maekawa, M. Yoshida, K. Kubota, and R. Katakai, Polymer 42, 1863 (2001).CrossRefGoogle Scholar
  68. 68.
    I. Bischofberger, D. C. E. Calzolari, and V. Trappe, Soft Matter 42, 8288 (2014).CrossRefGoogle Scholar
  69. 69.
    C. H. Hofmann, S. Grobelny, M. Erlkamp, R. Winter, and W. Richtering, Polymer 55, 2000 (2014).CrossRefGoogle Scholar
  70. 70.
    C. Scherzinger, A. Balaceanu, C. H. Hofmann, A. Schwarz, K. Leonhard, A. Pich, and W. Richtering, Polymer 62, 50 (2015).CrossRefGoogle Scholar
  71. 71.
    T. Wang, G. Liu, G. Zhang, and V. S. J. Craig, Langmuir 28, 1893 (2012).CrossRefGoogle Scholar
  72. 72.
    D. Mukherji, M. Wagner, M. D. Watson, S. Winzen, T. E. de Oliveira, C. M. Marques, and K. Kremer, Soft Matter 12, 7995 (2012).CrossRefGoogle Scholar
  73. 73.
    M. A. Schroer, J. Michalowsky, B. Fischer, J. Smiatek, and G. Grubel, Phys. Chem. Chem. Phys. 18, 31459 (2016).CrossRefGoogle Scholar
  74. 74.
    K. Kyriakos, M. Philipp, L. Silvi, W. Lohstroh, W. Petry, P. Muller-Buschbaum, and C. M. Papadakis, J. Phys. Chem. B 120, 4679 (2016).CrossRefGoogle Scholar
  75. 75.
    T. E. de Oliveira, P. A. Netz, D. Mukherji, and K. Kremer, Soft Matter 11, 8599 (2015).CrossRefGoogle Scholar
  76. 76.
    D. Mukherji, M. Wagner, M. D. Watson, S. Winzen, T. E. de Oliveira, C. M. Marques, and K. Kremer, Soft Matter 13, 2292 (2017).CrossRefGoogle Scholar
  77. 77.
    N. F. A. van der Vegt and F. Rodriguez-Ropero, Soft Matter 13, 2289 (2017).CrossRefGoogle Scholar
  78. 78.
    F. Tanaka, T. Koga, and F. M. Winnik, Phys. Rev. Lett. 101, 028302 (2008).CrossRefGoogle Scholar
  79. 79.
    D. Mukherji, C. M. Marques, and K. Kremer, Nat. Commun. 5, 4882 (2014).CrossRefGoogle Scholar
  80. 80.
    D. Mukherji, C. M. Marques, T. Stuehn, and K. Kremer, J. Chem. Phys. 142, 114903 (2015).CrossRefGoogle Scholar
  81. 81.
    J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 143, 131101 (2015).CrossRefGoogle Scholar
  82. 82.
    J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Phys. Chem. B 120, 5753 (2016).CrossRefGoogle Scholar
  83. 83.
    F. Rodriguez-Ropero, T. Hajari, and N. F. A. van der Vegt, J. Phys. Chem. B 119, 15780 (2015).CrossRefGoogle Scholar
  84. 84.
    J. Sommer, Langmuir 50, 2219 (2017).Google Scholar
  85. 85.
    X. Chen, W. Feng, X. Han, and H. Liu, Langmuir 33, 11446 (2017).CrossRefGoogle Scholar
  86. 86.
    Yu. A. Budkov, A. L. Kolesnikov, N. N. Kalikin, and M. G. Kiselev, Eur. Phys. Lett 114, 46004 (2016).CrossRefGoogle Scholar
  87. 87.
    Yu. A. Budkov and A. L. Kolesnikov, Soft Matter 13, 8362 (2017).CrossRefGoogle Scholar
  88. 88.
    P. Flory, in Statistical Mechanics of Chain Molecules (Wiley-Intersci. Press, New York, 1969).CrossRefGoogle Scholar
  89. 89.
    M. Fixman, J. Chem. Phys. 36, 310 (1962).CrossRefGoogle Scholar
  90. 90.
    Yu. A. Budkov and A. L. Kolesnikov, J. Stat. Mech.: Theory Exp. 2016, 103211 (2016).CrossRefGoogle Scholar
  91. 91.
    V. V. Vasilevskaya, V. A. Ryabina, S. G. Starodubtsev, and A. R. Khokhlov, Vysokomol. Soedin., Ser. A 31 (4) (1989).Google Scholar
  92. 92.
    T. M. Birshtein and Yu. V. Lyatskaya, Macromol. Symp. 81, 249 (1994).CrossRefGoogle Scholar
  93. 93.
    T. M. Birshtein and Yu. V. Lyatskaya, Macromolecules 27, 1256 (1994).CrossRefGoogle Scholar
  94. 94.
    T. M. Birshtein and Yu. V. Lyatskaya, Colloids Surf., A 86, 77 (1994).CrossRefGoogle Scholar
  95. 95.
    T. M. Birshtein, E. B. Zhulina, and A. A. Mercurieva, Macromol. Theory Simul. 9, 47 (2000).CrossRefGoogle Scholar
  96. 96.
    A. A. Mercurieva, F. A. M. Leermakers, T. M. Birshtein, G. J. Fleer, and E. B. Zhulina, Macromolecules 33, 1072 (2000).CrossRefGoogle Scholar
  97. 97.
    T. M. Birshtein, A. A. Mercurieva, and E. B. Zhulina, Macromol. Theory Simul. 10, 719 (2001).CrossRefGoogle Scholar
  98. 98.
    V. M. Amoskov, T. M. Birshtein, and A. A. Mercurieva, Macromol. Theory Simul. 15, 46 (2006).CrossRefGoogle Scholar
  99. 99.
    T. M. Birshtein and V. M. Amoskov, Vysokomol. Soedin., Ser. C 42 (12), 2286 (2000).Google Scholar
  100. 100.
    G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, J. Chem. Phys. 54, 1523 (1971).CrossRefGoogle Scholar
  101. 101.
    J. P. Hansen and I. R. McDonald, in Theory of Simple Liquids (Academic Press, London; New York; San Francisco, 1976).Google Scholar
  102. 102.
    A. A. Mercurieva, T. M. Birshtein, E. B. Zhulina, P. Iakovlev, J. van Male, and F. A. M. Leermakers, Macromolecules 35 (12), 4739 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow Institute of Electronics and MathematicsNational Research University Higher School of EconomicsMoscowRussia
  2. 2.Krestov Institute of Solution ChemistryRussian Academy SciencesIvanovoRussia
  3. 3.Porotec GmbHHofheim am TaunusGermany
  4. 4.Institut für Nichtklassische Chemie e.V.LeipzigGermany

Personalised recommendations