Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 25–36 | Cite as

Statistical Properties of a Polymer Globule Formed during Collapse with the Irreversible Coalescence of Units

  • A. M. Astakhov
  • S. K. NechaevEmail author
  • K. E. Polovnikov
Article
  • 23 Downloads

Abstract

Collapse of the polymer chain upon the sharp decrease of solvent quality is studied. During collapse, any pair of polymer units appearing in a sufficiently close vicinity in space has the possibility with a certain probability to form an irreversible crosslink, thereby preventing the interpenetration of chain material between the forming clusters. Globular structures having different spatial chain packing at various scales are obtained by computer simulations. It is shown that the dependence of probability of contact between two monomers in space P(s), where s is a distance between monomers along chain, reproduces a number of characteristic features observed previously in experiments on the analysis of three-dimensional chromatin packing. The cluster analysis of intramolecular contact maps makes it possible to express the hypothesis that there are characteristic discrete hierarchical levels in polymer packing associated with the number-theoretic origin of rare-event statistics and inherent to individual maps of intra- and interchromosomal contacts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Vol’kenshtein, Configurational Statistics of Polymer Chains (AN SSSR, Moscow, 1959) [in Russian].Google Scholar
  2. 2.
    T. M. Birshtein and O. B. Ptitsyn, Conformations of Macromolecules (Nauka, Leningrad, 1964) [in Russian].Google Scholar
  3. 3.
    I. M. Lifshits, Sov. Phys. JETP 28, 1280 (1969).Google Scholar
  4. 4.
    E. Zhulina, O. Borisov, and T. Birshtein, J. Phys. II 2, 63 (1992).Google Scholar
  5. 5.
    A. Polotsky, M. Charlaganov, F. Leermakers, M. Daoud, O. Borisov, and T. Birshtein, Macromolecules 42, 5360 (2009).CrossRefGoogle Scholar
  6. 6.
    B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, San Francisco, 1982).Google Scholar
  7. 7.
    A. Yu. Grosberg, S. K. Nechaev, and E. I. Shakhnovich, J. Phys. (Paris) 49, 2095 (1988).CrossRefGoogle Scholar
  8. 8.
    A. Grosberg, Y. Rabin, S. Havlin, and A. Neer, Europhys. Lett. 23, 373 (1993).CrossRefGoogle Scholar
  9. 9.
    E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and J. Dekker, Science 326, 289 (2009).CrossRefGoogle Scholar
  10. 10.
    J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Science 295, 1306 (2002).CrossRefGoogle Scholar
  11. 11.
    K. Polovnikov, S. Nechaev, and M. V. Tamm, Soft Matter 14, 6561 (2018).CrossRefGoogle Scholar
  12. 12.
    K. Polovnikov, M. Gherardi, M. Cosentino-Lagomarsino, and M.V. Tamm, Phys. Rev. Lett. 120, 088101 (2018).CrossRefGoogle Scholar
  13. 13.
    M. Imakaev, S. Nechaev, K. Tchourine, and L. Mirny, Soft Matter 11, 665 (2015).CrossRefGoogle Scholar
  14. 14.
    R. D. Schram, G. T. Barkema, and H. Schiessel, J. Chem. Phys. 138, 224901 (2013).CrossRefGoogle Scholar
  15. 15.
    A. M. Astakhov, V. A. Ivanov, and V. V. Vasilevskaya, Dokl. Phys. Chem. 472, 6 (2017).CrossRefGoogle Scholar
  16. 16.
    R. K. Sachs, G. van der Engh, B. Trask, H. Yokota, and J. E. Hearst, Proc. Natl. Acad. Sci. U. S. A. 92, 2710 (1995).CrossRefGoogle Scholar
  17. 17.
    C. Münkel and J. Langowski, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 5888 (1998).CrossRefGoogle Scholar
  18. 18.
    J. Ostashevsky, Mol. Biol. Cell 9, 3031 (1998).CrossRefGoogle Scholar
  19. 19.
    J. Mateos-Langerak, M. Bohn, W. de Leeuw, O. Giromus, E. M. M. Manders, P. J. Verschure, M. H. G. Indemans, H. J. Gierman, D. W. Heerman, R. van Driel, and S. Goetze, Proc. Natl. Acad. Sci. U. S. A. 106, 3812 (2009).CrossRefGoogle Scholar
  20. 20.
    B. V. S. Iyer and G. Arya, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 86, 011911 (2012).CrossRefGoogle Scholar
  21. 21.
    M. Barbieri, M. Chotalia, J. Fraser, L.-M. Lavitas, J. Dostie, A. Pombo, and M. Nicodemi, Proc. Natl. Acad. Sci. U. S. A. 109, 16173 (2012).CrossRefGoogle Scholar
  22. 22.
    C. C. Fritsch and J. Langowski, Chromosome Res. 19, 63 (2011).CrossRefGoogle Scholar
  23. 23.
    A. Rosa and R. Everaers, PLoS Comput. Biol. 4 (2008).Google Scholar
  24. 24.
    L. A. Mirny, Cromosome Res. 19, 37 (2011).CrossRefGoogle Scholar
  25. 25.
    J. D. Halverson, J. Smrek, K. Kremer, and A. Yu. Grosberg, Rep. Prog. Phys. 77, 022601 (2014).CrossRefGoogle Scholar
  26. 26.
    A. Yu. Grosberg, Soft Matter 10, 560 (2014).CrossRefGoogle Scholar
  27. 27.
    A. Rosa and R. Everaers, Phys. Rev. Lett. 112, 118302 (2014).CrossRefGoogle Scholar
  28. 28.
    M. Tamm, L. Nazarov, A. Gavrilov, and A. Chertovich, Phys. Rev. Lett. 114, 178102 (2015).CrossRefGoogle Scholar
  29. 29.
    V. A. Avetisov, L. Nazarov, S. K. Nechaev, and M. V. Tamm, Soft Matter 11, 1019 (2015).CrossRefGoogle Scholar
  30. 30.
    J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, and B. Ren, Nature 485, 7398 (2012).CrossRefGoogle Scholar
  31. 31.
    E. P. Nora, J. Dekker, and E. Heard, BioEssays 35, 9 (2013).CrossRefGoogle Scholar
  32. 32.
    S. V. Ulianov, E. E. Khrameeva, A. A. Gavrilov, I.M. Flyamer, P. Kos, E. A. Mikhaleva, A. A. Penin, M. D. Logacheva, M. V. Imakaev, A. Chertovich, M. S. Gelfand, Y. Y. Shevelyov, and S. V. Razin, Genome Res. 26, 1 (2016).CrossRefGoogle Scholar
  33. 33.
    S. S. Rao, M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov, J. T. Robinson, A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander, and E. L. Aiden, Cell 159, 1665 (2014).CrossRefGoogle Scholar
  34. 34.
    A. L. Sanborn, S. S. Rao, S. C. Huang, N. C. Durand, M. H. Huntley, A. I. Jewett, I. D. Bochkov, D. Chinnappan, A. Cutkosky, J. Li, K. P. Geeting, A. Gnirke, A. Melnikov, D. McKenna, E. K. Stamenova, E. S. Lander, and E. L. Aiden, Proc. Natl. Acad. Sci. U. S. A. 112, E6456 (2015).CrossRefGoogle Scholar
  35. 35.
    G. Fudenberg, M. Imakaev, C. Lu, A. Goloborodko, N. Abdennur, and L. A. Mirny, Cell Rep. 15, 2038 (2016).CrossRefGoogle Scholar
  36. 36.
    C. A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M. Nicodemi, P. R. Cook, and D. Marenduzzo, Phys. Rev. Lett. 119, 138101 (2017).CrossRefGoogle Scholar
  37. 37.
    O. Shukron and D. Holcman, PLoS Comput. Biol. 13, E1005469 (2017).CrossRefGoogle Scholar
  38. 38.
    V. F. Scolari, G. Mercy, R. Koszul, A. Lesne, and J. Mozziconacci, Phys. Rev. Lett. 121, 057801 (2018).CrossRefGoogle Scholar
  39. 39.
    G. Bunin and M. Kardar, Phys. Rev. Lett. 115 (8), 088303 (2015).CrossRefGoogle Scholar
  40. 40.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  41. 41.
    A. Khokhlov and S. Nechaev, Phys. Lett. A 112, 156 (1985).CrossRefGoogle Scholar
  42. 42.
    T. Ge, S. Panyukov, and M. Rubinstein, Macromolecules 49 (2), 708 (2016).CrossRefGoogle Scholar
  43. 43.
    E. Helfand and D. S. Pearson, J. Chem. Phys. 79, 2054 (1983).CrossRefGoogle Scholar
  44. 44.
    M. E. Cates and J. M. Deutsch, J. Phys. (Paris) 47, 2121 (1986).CrossRefGoogle Scholar
  45. 45.
    V. Avetisov, P. Krapivsky, and S. Nechaev, J. Phys. A: Math. Theor. 49, 035101 (2016).CrossRefGoogle Scholar
  46. 46.
    V. Kovaleva, Yu. Maximov, S. Nechaev, and O. Valba, J. Stat. Mech.: Theory Exp. 2017, 073402 (2017).CrossRefGoogle Scholar
  47. 47.
    S. Nechaev and K. Polovnikov, Phys.-Usp. 61, 99 (2018).CrossRefGoogle Scholar
  48. 48.
    S. Nechaev and K. Polovnikov, Soft Matter 13, 1420 (2017).CrossRefGoogle Scholar
  49. 49.
    M. Middendorf, E. Ziv, and C. H. Wiggins, Proc. Natl. Acad. Sci. U. S. A. 102, 3192 (2005).CrossRefGoogle Scholar
  50. 50.
    V. Trifonov, L. Pasqualucci, R. Dalla-Favera, and R. Rabadan, Sci. Rep. 1, 191 (2011).CrossRefGoogle Scholar
  51. 51.
    V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, “Lomonosov”: Supercomputing at Moscow State University, Contemporary High Performance Computing: From Petascale toward Exascale, Ed. by J. S. Vetter (Chapman and Hall/CRC Computational Science, Boca Raton, 2013), pp. 283–307.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Astakhov
    • 1
    • 2
  • S. K. Nechaev
    • 3
    • 4
    Email author
  • K. E. Polovnikov
    • 2
    • 5
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia
  3. 3.Independent University of MoscowMoscowRussia
  4. 4.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  5. 5.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations