Advertisement

Polymer Science, Series C

, Volume 59, Issue 1, pp 106–118 | Cite as

Dendritic polyelectrolyte brushes

  • E. B. Zhulina
  • O. V. Borisov
Article

Abstract

The current state of the theory of brushes formed by dendritically branched ionized macromolecules attached by the root segment to a planar substrate and immersed in a polar solvent (water) is discussed. The theory makes it possible to unravel the most distinctive features of such brushes associated with the branched architecture of brush-forming chains and to systematically compare them with the properties of brushes formed by linear polyelectrolyte chains. Owing to their peculiar properties, dendritic polyelectrolyte brushes show promise for designing smart functional polymeric materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Guzey and D. J. McClements, Adv. Colloid Interface Sci. 128, 227 (2006).CrossRefGoogle Scholar
  2. 2.
    A. H. Gröschel, A. Walther, T. I. Lobling, F. H. Schacher, H. Schmalz, and A. H. E. Müller, Nature 503 (7475), 247 (2013).Google Scholar
  3. 3.
    M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, and J. E. Gautrot, Chem. Rev. 114 (21), 10976 (2014).CrossRefGoogle Scholar
  4. 4.
    N. Ayres, Polym. Chem. 1 (6), 769 (2010).CrossRefGoogle Scholar
  5. 5.
    M. A. Cohen Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, Nat. Mater. 9, 101 (2010).CrossRefGoogle Scholar
  6. 6.
    J. Bujdak, J. Phys. Chem. C 119, 9656 (2015).CrossRefGoogle Scholar
  7. 7.
    T. Moro, Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita, U.-I. L. Chung, K. Nakamura, and H. Kawaguchi, Nat. Mater. 3 (11), 829 (2004).CrossRefGoogle Scholar
  8. 8.
    T. Gillich, E. M. Benetti, E. Rakhmatullina, R. Konradi, W. Li, A. Zhang, A. D. Schlüter, and M. Textor, J. Am. Chem. Soc. 133 (28), 10940 (2011).CrossRefGoogle Scholar
  9. 9.
    T. Gillich, C. Acikgöz, L. Isa, A. D. Schlüter, N. D. Spencer, and M. Textor, ACS Nano 7 (2013), 316.CrossRefGoogle Scholar
  10. 10.
    A. D. Schlüter, Top. Curr. Chem. 245, 151 (2005).Google Scholar
  11. 11.
    S. J. Teertstra and M. Gauthier, Prog. Polym. Sci. 29, 277 (2004).CrossRefGoogle Scholar
  12. 12.
    C. Schull and H. Frey, Polymer 54, 5443 (2013).CrossRefGoogle Scholar
  13. 13.
    B. Vu, M. Chen, R. J. Crawford, and E. P. Ivanova, Molecules 14 (7), 2535 (2009).CrossRefGoogle Scholar
  14. 14.
    T. A. Camesano and N. I. Abu-Lail, Biomacromolecules 3 (4), 661 (2002).CrossRefGoogle Scholar
  15. 15.
    N. I. Abu-Lail and T. A. Camesano, Biomacromolecules 4 (4), 1000 (2003).CrossRefGoogle Scholar
  16. 16.
    G. T. Pickett, Macromolecules 34, 8784 (2001).CrossRefGoogle Scholar
  17. 17.
    I. O. Götze and C. N. Likos, Macromolecules 36, 8189 (2003).CrossRefGoogle Scholar
  18. 18.
    M. Kröger, O. Peleg, and A. Halperin, Macromolecules 43, 6213 (2010).CrossRefGoogle Scholar
  19. 19.
    A. A. Polotsky, T. Gillich, O. V. Borisov, F. A. M. Leermakers, M. Textor, and T. M. Birshtein, Macromolecules 43, 9555 (2010).CrossRefGoogle Scholar
  20. 20.
    H. Merlitz, C.-X. Wu, and J.-U. Sommer, Macromolecules 44, 7043 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Merlitz, W. Cui, C.-X. Wu, and J.-U. Sommer, Macromolecules 46, 1248 (2013).CrossRefGoogle Scholar
  22. 22.
    A. A. Polotsky, F. A. M. Leermakers, E. B. Zhulina, and T. M. Birshtein, Macromolecules 45, 7260 (2012).CrossRefGoogle Scholar
  23. 23.
    L. N. Gergidis, A. Kalogirou, and C. Vlahos, Langmuir 28, 17176 (2012).CrossRefGoogle Scholar
  24. 24.
    Y. Guo, J. D. van Beek, B. Zhang, M. Colussi, P. Walde, A. Zhang, M. Kröger, A. Halperin, and A. D. Schlüter, J. Am. Chem. Soc. 131, 11841 (2009).CrossRefGoogle Scholar
  25. 25.
    O. V. Borisov, E. B. Zhulina, and T. M. Birshtein, ACS Macro Lett. 1, 1166 (2012).CrossRefGoogle Scholar
  26. 26.
    O. V. Rud, A. A. Polotsky, T. Gillich, O. V. Borisov, F. A. M. Leermakers, M. Textor, and T. M. Birshtein, Macromolecules 46, 4651 (2013).CrossRefGoogle Scholar
  27. 27.
    L. N. Gergidis, A. Kalogirou, A. Charalambopoulos, and C. Vlahos, J. Chem. Phys. 139, 044913 (2013).Google Scholar
  28. 28.
    S. Alexander, J. Phys. 38, 983 (1977).Google Scholar
  29. 29.
    P.-G. de Gennes, Macromolecules 13, 1069 (1980).Google Scholar
  30. 30.
    M. Daoud and J.-P. Cotton, J. Phys. 43, 531 (1982).CrossRefGoogle Scholar
  31. 31.
    Ye. B. Zhulina, Polym. Sci. U. S. S. R. 26, 885 (1984).CrossRefGoogle Scholar
  32. 32.
    T. M. Birshtein and E. B. Zhulina, Polymer 25, 1453 (1984).CrossRefGoogle Scholar
  33. 33.
    A. A. Polotsky, A. K. Misorin, E. B. Zhulina, and T. M. Birshtein, Macromol. Symp. 348, 33 (2012).CrossRefGoogle Scholar
  34. 34.
    O. V. Borisov, E. B. Zhulina, A. A. Polotsky, F. A. M. Leermakers, and T. M. Birshtein, Macromolecules 47, 6932 (2014).CrossRefGoogle Scholar
  35. 35.
    E. B. Zhulina, F. A. M. Leermakers, and O. V. Borisov, Langmuir 31, 6514 (2015).CrossRefGoogle Scholar
  36. 36.
    E. B. Zhulina, F. A. M. Leermakers, and O. V. Borisov, Macromolecules 48 (24), 5614 (2015).Google Scholar
  37. 37.
    H. Merlitz, W. Cui, C.-X. Wu, and J.-U. Sommer, Macromolecules 46, 1248 (2013).CrossRefGoogle Scholar
  38. 38.
    W. Cui, C.-F. Su, H. Merlitz, C.-X. Wu, and J.-U. Sommer, Macromolecules 47, 3645 (2014).CrossRefGoogle Scholar
  39. 39.
    O. V. Borisov, A. A. Polotsky, O. V. Rud, E. B. Zhulina, F. A. M. Leermakers, and T. M. Birshtein, Soft Matter 10, 2093 (2014).CrossRefGoogle Scholar
  40. 40.
    S. Tripathy and M. K. Das, J. Appl. Pharm. Sci. 3, 142 (2013).Google Scholar
  41. 41.
    N. K. Voulgarakis, K. O. Rasmussen, and P. M. Welch, J. Chem. Phys. 130, 155101 (2009).CrossRefGoogle Scholar
  42. 42.
    B. Klajnert, M. Cortijo-Arellano, J. Cladera, and M. Bryszewska, Biochem. Biophys. Res. Commun. 345, 21 (2006).CrossRefGoogle Scholar
  43. 43.
    I. M. Neelov, A. Janaszewska, B. Klajnert, M. Bryszewska, N. Z. Makova, D. Hicks, H. A. Pearson, G. P. Vlasov, M. Yu. Ilyash, D. S. Vasilev, N. M. Dubrovskaya, N. L. Tumanova, I. A. Zhuravin, A. J. Turner, and N. N. Nalivaeva, Curr. Top. Med. Chem. 20, 134 (2013).CrossRefGoogle Scholar
  44. 44.
    O. V. Borisov, E. B. Zhulina, and T. M. Birshtein, Macromolecules 27, 4795 (1994).CrossRefGoogle Scholar
  45. 45.
    R. Israels, F. A. M. Leemakers, G. J. Fleer, and E. B. Zhulina, Macromolecules 27, 3249 (1994).CrossRefGoogle Scholar
  46. 46.
    E. B. Zhulina and O. V. Borisov, J. Chem. Phys. 107, 5952 (1997).CrossRefGoogle Scholar
  47. 47.
    E. B. Zhulina, J. Klein Walterink, and O. V. Borisov, Macromolecules 33, 4945 (2000).CrossRefGoogle Scholar
  48. 48.
    J. W. Mays, Polym. Commun. 31, 170 (1990).Google Scholar
  49. 49.
    M. Heinrich, M. Rawiso, J. G. Zilliox, P. Lesieur, and J. P. Simon, Eur. Phys. J. E: Soft Matter Biol. Phys. 4, 131 (2001).CrossRefGoogle Scholar
  50. 50.
    K. Karaky, S. Reynaud, L. Billon, J. Francois, and Y. Chreim, J. Polym. Sci., Part A: Polym. Chem. 43, 5186 (2005).CrossRefGoogle Scholar
  51. 51.
    F. A. Plamper, H. Becker, M. Lanzendörfer, M. Patel, A. Wittemann, M. Ballauff, and A. H. E. Müller, Macromol. Chem. Phys. 206, 1813 (2005).Google Scholar
  52. 52.
    F. A. Plamper, A. Walther, A. H. E. Müller, and M. Ballauff, Nano Lett. 7, 167 (2007).CrossRefGoogle Scholar
  53. 53.
    O. V. Borisov, E. B. Zhulina, F. A. M. Leermakers, M. Ballauff, and A. H. E. Müller, Adv. Polym. Sci. 241, 1 (2011).Google Scholar
  54. 54.
    W. Xu, I. Choi, F. A. Plamper, C. V. Synatchke, A. H. E. Müller, Y. B. Melnichenko, and V. V. Tsukruk, Macromolecules 47, 2112 (2014).CrossRefGoogle Scholar
  55. 55.
    A. N. Semenov, Sov. Phys. JETP 61, 733 (1985).Google Scholar
  56. 56.
    E. B. Zhulina and O. V. Borisov, Macromolecules 48, 1499 (2015).CrossRefGoogle Scholar
  57. 57.
    E. B. Zhulina, O. V. Borisov, V. A. Pryamitsyn, and T. M. Birshtein, Macromolecules 24, 140 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.CNRS, UMR 5254–IPREM–Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les MatériauxUniversité de Pau & Pays de l’AdourPauFrance

Personalised recommendations