Advertisement

Polymer Science, Series C

, Volume 59, Issue 1, pp 11–17 | Cite as

Tough, self-recovery and self-healing polyampholyte hydrogels

  • Tao Lin Sun
  • Kunpeng Cui
  • Jian Ping Gong
Article
  • 161 Downloads

Abstract

This article reviews the recently developed tough, self-recovery, and self-healing polyampholyte hydrogels. Polyampholyte hydrogels are synthesized using one-step radical copolymerization of cationic and anionic monomers with equal charges at high monomer concentration. The random copolymerization process makes the ionic monomers randomly distributing along the backbones, resulting in the formation of ionic bonds with a wide strength distribution via inter and intra chain complexation in the polymer network, weak bond and strong bonds. The strong bonds serve as permanent cross-linking, integrating the hydrogels to impart the elastic behavior, while the weak bonds can break upon the loading, dissipating energy to give the toughness, and re-form again after unloading to enable the self-recovery behavior. Accordingly, polyampholyte hydrogels have condensed polymers in water (ca 40−50 wt %). They are strongly viscoelastic and have a high toughness (fracture energy of 4000 J/m2), a wide range of tuning modulus (0.01 to 8 MPa), 100% self-recovery, and a high self-healing efficiency after cutting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Drury and D. J. Mooney, Biomaterials 24, 4337 (2003).CrossRefGoogle Scholar
  2. 2.
    S. Naficy, H. R. Brown, J. M. Razal, G. M. Spinks, and P. G. Whitten, Aust. J. Chem. 64, 1007 (2011).CrossRefGoogle Scholar
  3. 3.
    J. P. Gong, Soft Matter 6, 2583 (2010).CrossRefGoogle Scholar
  4. 4.
    J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, Adv. Mater. 15, 1155 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Guo, L. M. Pitet, H. M. Wyss, M. Vos, P. Y. W. Dankers, and E. W. Meijer, J. Am. Chem. Soc. 136, 6969 (2014).Google Scholar
  6. 6.
    M. A. Haque, T. Kurokawa, G. Kamita, and J. P. Gong, Macromolecules 44, 8916 (2011).CrossRefGoogle Scholar
  7. 7.
    K. Haraguchi and T. Takehisa, Adv. Mater. 14, 1120 (2002).CrossRefGoogle Scholar
  8. 8.
    T. Huang, H. Xu, K. Jiao, L. Zhu, H. R. Brown, and H. Wang, Adv. Mater. 19, 1622 (2007).CrossRefGoogle Scholar
  9. 9.
    H. Zhang, T. L. Sun, A. Zhang, T. Nakajima, T. Nonoyama, T. Kurokawa, O. Ito, H. Ishitobi, and J. P. Gong, Adv. Mater. 28, 4884 (2016).CrossRefGoogle Scholar
  10. 10.
    F. Luo, T. L. Sun, T. Nakajima, T. Kurokawa, Y. Zhao, K. Sato, A. Bin Ihsan, X. Li, H. Guo, and J. P. Gong, Adv. Mater. 27, 2722 (2015).CrossRefGoogle Scholar
  11. 11.
    J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, Nature 489, 133 (2012).CrossRefGoogle Scholar
  12. 12.
    T. L. Sun, T. Kurokawa, S. Kuroda, A. Bin Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, and J. P. Gong, Nat. Mater. 12, 932 (2013).CrossRefGoogle Scholar
  13. 13.
    R. E. Webber, C. Creton, H. R. Brown, and J. P. Gong, Macromolecules 40, 2919 (2007).CrossRefGoogle Scholar
  14. 14.
    E. Ducrot, Y. Chen, M. Bulters, R. P. Sijbesma, and C. Creton, Science 344, 186 (2014).CrossRefGoogle Scholar
  15. 15.
    K. Mayumi, A. Marcellan, G. Ducouret, C. Creton, and T. Narita, ACS Macro Lett. 2, 1065 (2013).Google Scholar
  16. 16.
    G. Jiang, C. Liu, X. Liu, G. Zhang, M. Yang, Q. Chen, and F. Liu, J. Macromol. Sci., Part A: Pure Appl. Chem. 47, 335 (2010).CrossRefGoogle Scholar
  17. 17.
    D. C. Tuncaboylu, M. Sari, W. Oppermann, and O. Okay, Macromolecules 44, 4997 (2011).CrossRefGoogle Scholar
  18. 18.
    R. Long, K. Mayumi, C. Creton, T. Narita, and C. Y. Hui, Macromolecules 47, 7243 (2014).CrossRefGoogle Scholar
  19. 19.
    F. Meng, R. H. Pritchard, and E. M. Terentjev, Macromolecules 49, 2843 (2016).CrossRefGoogle Scholar
  20. 20.
    K. Cui, T. L. Sun, T. Kurokawa, T. Nakajima, T. Nonoyama, L. Chen, and J. P. Gong, Soft Matter 12, 8833 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Bin Ihsan, T. L. Sun, S. Kuroda, M. A. Haque, T. Kurokawa, T. Nakajima, and J. P. Gong, J. Mater. Chem. B 1, 4555 (2013).CrossRefGoogle Scholar
  22. 22.
    A. Bin Ihsan, T. L. Sun, T. Kurokawa, S. N. Karobi, T. Nakajima, T. Nonoyama, C. K. Roy, F. Luo, and J. P. Gong, Macromolecules 49, 4245 (2016).CrossRefGoogle Scholar
  23. 23.
    S. N. Karobi, T. L. Sun, T. Kurokawa, F. Luo, T. Nakajima, T. Nonoyama, and J. P. Gong, Macromolecules 49, 5630 (2016).CrossRefGoogle Scholar
  24. 24.
    F. Luo, T. L. Sun, T. Nakajima, T. Kurokawa, Y. Zhao, A. Bin Ihsan, H. L. Guo, X. F. Li, and J. P. Gong, Macromolecules 47, 6037 (2014).CrossRefGoogle Scholar
  25. 25.
    T. L. Sun, F. Luo, T. Kurokawa, S. N. Karobi, T. Nakajima, and J. P. Gong, Soft Matter 11, 9355 (2015).CrossRefGoogle Scholar
  26. 26.
    A. V. Dobrynin, R. H. Colby, and M. Rubinstein, J. Polym. Sci., Part B: Polym. Phys. 42, 3513 (2004).CrossRefGoogle Scholar
  27. 27.
    P. Higgs and J. Joanny, J. Chem. Phys. 94, 1543 (1991).CrossRefGoogle Scholar
  28. 28.
    D. Taylor, N. O’Mara, E. Ryan, M. Takaza, and C. Simms, J. Mech. Behav. Biomed. Mater. 6, 139 (2012).CrossRefGoogle Scholar
  29. 29.
    A. M. Bauer, A. P. Russell, and R. E. Shadwick, J. Exp. Biol. 145, 79 (1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Laboratory of Soft and Wet Matter, Faculty of Advanced Life ScienceHokkaido UniversitySapporoJapan
  2. 2.Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE)Hokkaido UniversitySapporoJapan

Personalised recommendations