Polymer Science Series C

, Volume 58, Issue 1, pp 93–101 | Cite as

Polymer composites with surface modified SiO2 nanoparticles: Structures, properties, and promising applications

  • O. A. SerenkoEmail author
  • A. M. Muzafarov


Data from recent studies of polymer composites with nanosized silica particles are considered. A comparative analysis of current approaches to the description of concentration changes in the glass-transition temperatures of these systems is performed. The morphology of the surface layer in materials with nanoparticles and its effect on the characteristics of materials are discussed. The surface layer of a composite is represented as a shell including both the polymer and the external part of the filler. A conditional division between the functions of the external layer and the nanoparticle core makes it possible to determine in a first approximation which characteristics of the matrix and the filler have an effect on the properties of nanocomposites.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. C. Tjong, Mater. Sci. Eng., R 53, 73 (2006).CrossRefGoogle Scholar
  2. 2.
    Polymer Nanocomposites, Ed. by Y.-W.Mai and Z.-Z. Yu (Woodhead Publ. Limited, New York, 2006).Google Scholar
  3. 3.
    A. V. Richard and F. John, Chem. Mater., No. 19, 2736 (2007).CrossRefGoogle Scholar
  4. 4.
    B. A. Rozenberg and R. Tenne, Prog. Polym. Sci. 33, 40 (2008).CrossRefGoogle Scholar
  5. 5.
    H. Zou, S. Wu, and J. Shen, Chem. Rev. 108, 3893 (2008).CrossRefGoogle Scholar
  6. 6.
    L. Ruiz-Perez, G. J. Royston, J. P. A. Fairclough, and A. J. Ryan, Polymer 49, 4475 (2008).CrossRefGoogle Scholar
  7. 7.
    J. Njuguna, K. Pielichowski, and S. Desai, Polym. Adv. Technol. 19, 947 (2008).CrossRefGoogle Scholar
  8. 8.
    J. Moczo and B. Pukanszky, J. Ind. Eng. Chem. 14, 535 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Maiti, M. Bhattacharya, and A. K. Bhowmick, Rubber Chem. Technol. 81 (3), 384 (2008).CrossRefGoogle Scholar
  10. 10.
    D. R. Paul and L. M. Robeson, Polymer 49, 3187 (2008).CrossRefGoogle Scholar
  11. 11.
    J. Jancar, J. F. Douglas, F. W. Starrf, S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sternstein, and M. J. Buehler, Polymer 51, 3321 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. X. Gan, Micron 43, 782 (2012).CrossRefGoogle Scholar
  13. 13.
    V. A. Gerasin, E. M. Antipov, V. V. Karbushev, V. G. Kulichikhin, G. P. Karpacheva, R. V. Talroze, and Ya. V. Kudryavtsev, Russ. Chem. Rev. 82 (4), 303 (2013).CrossRefGoogle Scholar
  14. 14.
    L. Peponi, D. Puglia, L. Torrea, L. Valentini, and J. M. Kenny, Mater. Sci. Eng., R 85, 1 (2014).CrossRefGoogle Scholar
  15. 15.
    A. M. Diez-Pascual, M. A. Gomez-Fatou, F. Ania, and A. Flores, Prog. Mater. Sci 67, 1 (2015).CrossRefGoogle Scholar
  16. 16.
    D. W. Schaefer and R. S. Justice, Macromolecules 40 (24), 8502 (2007).CrossRefGoogle Scholar
  17. 17.
    Ph. Cassagnau, Polymer 49, 2183 (2008).CrossRefGoogle Scholar
  18. 18.
    Functional Fillers for Plastics, Ed. by M.Xanthos (Wiley-VCH, Weinheim, 2005).Google Scholar
  19. 19.
    A. D. Pomogailo, Russ. Chem. Rev. 69 (1), 53 (2000).CrossRefGoogle Scholar
  20. 20.
    V. Bounor-Lgare and Ph. Cassagnau, Prog. Polym. Sci. 39, 1473 (2014).CrossRefGoogle Scholar
  21. 21.
    T. Ogoshi and Y. Chujo, Compos. Interfaces 11 (8–9), 539 (2005).CrossRefGoogle Scholar
  22. 22.
    G. Kickelbick, Prog. Polym. Sci. 28, 83 (2003).CrossRefGoogle Scholar
  23. 23.
    B. D. Summ and N. I. Ivanova, Russ. Chem. Rev. 69 (11), 911 (2000).CrossRefGoogle Scholar
  24. 24.
    S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, Prog. Polym. Sci. 38, 1232 (2013).CrossRefGoogle Scholar
  25. 25.
    M. Tanahashi, M. Hirose, J.-C. Lee, and K. Takeda, Polym. Adv. Technol. 17, 981 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Mizuno, K. Nakamura, T. Konishi, and K. Fukao, J. Non-Cryst. Solids 357, 594 (2011).CrossRefGoogle Scholar
  27. 27.
    A. Bansal, H. Yang, C. Li, K. Cho, B. C. Benicewich, S. K. Kumar, and L. S. Schadler, Nat. Mater. 4, 693 (2005).CrossRefGoogle Scholar
  28. 28.
    P. Rittigstein, R. D. Priestley, L. J. Broadbelt, and J. M. Torkelson, Nat. Mater. 6, 278 (2007).CrossRefGoogle Scholar
  29. 29.
    N. Jouault, P. Vallat, F. Dalmas, S. Said, J. Jestin, and F. Boue, Macromolecules 42, 2031 (2009).CrossRefGoogle Scholar
  30. 30.
    M. Mortezaei, G. Farzi, M. R. Kalaee, and M. Zabihpoor, J. Appl. Polym. Sci. 119, 2039 (2011).CrossRefGoogle Scholar
  31. 31.
    J. S. Meth, S. G. Zane, C. Chi, J. D. Londono, B.A. Wood, P. Cotts, M. Keating, W. Guise, and S. Weigand, Macromolecules 44 (20), 8301 (2011).CrossRefGoogle Scholar
  32. 32.
    O. Bera, B. Pilic, J. Pavlicevic, M. Jovicic, B. Hollo, K. M. Szecsenyi, and M. Spirkova, Thermochim. Acta 515, 1 (2011).CrossRefGoogle Scholar
  33. 33.
    J. Moll and S. K. Kumar, Macromolecules 45, 1131 (2012).CrossRefGoogle Scholar
  34. 34.
    S.-L. Huang, W.-K. Chin, and W. P. Yang, Polymer 46 (6), 1865 (2005).CrossRefGoogle Scholar
  35. 35.
    S. Sen, Y. Xie, A. Bansal, H. Yang, K. Cho, L. S. Schadler, and S. K. Kumar, Eur. Phys. J.: Spec. Top. 141, 161 (2007).Google Scholar
  36. 36.
    L. S. Schanler, S. K. Kumar, B. C. Benicewicz, S. L. Lewis, and S. E. Harton, MRS Bull. 32, 335 (2007).CrossRefGoogle Scholar
  37. 37.
    C. E. Porter and F. D. Blum, Macromolecules 33, 7016 (2000).CrossRefGoogle Scholar
  38. 38.
    K. Parker, R. T. Schneider, R. W. Siegel, R. Ozisik, J. C. Cabanelas, B. Serrano, C. Antonelli, and J. Dselga, Polymer 51, 4891 (2010).CrossRefGoogle Scholar
  39. 39.
    J. A. Forrest and J. Mattisson, Phys.Rev. E 61, R53 (2000).CrossRefGoogle Scholar
  40. 40.
    K. J. Lee, D. K. Lee, Y. W. Kim, W.-S. Choe, and J. H. Kim, J. Polym. Sci., Part B: Polym. Phys. 45, 2232 (2007).CrossRefGoogle Scholar
  41. 41.
    Z. Pu, H. Tang, X. Huang, J. Yang, Y. Zhan, R. Zhao, and X. Liu, Colloids Surf., A 415, 125 (2012).CrossRefGoogle Scholar
  42. 42.
    A. S. Sarvestani and E. Jabbari, Polym. Compos. 29, 326 (2008).CrossRefGoogle Scholar
  43. 43.
    S. E. Harton, S. K. Kumar, H. Yang, T. Koga, K. Hicks, H. Lee, J. Mijovic, M. Liu, R. S. Vallery, and D. W. Gigley, Macromolecules 43, 3415 (2010).CrossRefGoogle Scholar
  44. 44.
    S. S. Stenstein and A.-J. Zhu, Macromolecules 35, 7262 (2002).CrossRefGoogle Scholar
  45. 45.
    P. Mele, S. Marceau, D. Brown, Y. de Puydt, and N. D. Alberola, Polymer 43, 5577 (2002).CrossRefGoogle Scholar
  46. 46.
    M. Mortezaei, G. Farzi, M. R. Kalaee, and M. Zabihpoor, J. Appl. Polym. Sci. 119, 2039 (2011).CrossRefGoogle Scholar
  47. 47.
    G. Filippone, G. Romeo, and D. Acierno, Langmuir 26 (4), 2714 (2010).CrossRefGoogle Scholar
  48. 48.
    J. Berriot, H. Montes, F. Lequeux, D. Long, and P. Sotta, Macromolecules 35, 9756 (2002).CrossRefGoogle Scholar
  49. 49.
    M. I. Aranguren, E. Mora, J. V. DeGroot, and C. W. Macosko, J. Rheol. 36, 1165 (1992).CrossRefGoogle Scholar
  50. 50.
    N. Jouault, P. Vallat, F. Dalmas, S. R. Said, J. Jestin, and F. Boue, Macromolecules 42, 2031 (2009).CrossRefGoogle Scholar
  51. 51.
    G. Allegra, G. Raos, and M. Vacatello, Prog. Polym. Sci. 33, 683 (2008).CrossRefGoogle Scholar
  52. 52.
    L. M. Hall, A. Jayaraman, and K. S. Schweizer, Curr. Opin. Solid State Mater. Sci. 14, 38 (2010).CrossRefGoogle Scholar
  53. 53.
    J. S. Meth and S. R. Lustig, Polymer 51, 4259 (2010).CrossRefGoogle Scholar
  54. 54.
    V. Arrighi, I. J. McEwen, H. Qian, and M. B. Serrano Prieto, Polymer 44, 6259 (2003).CrossRefGoogle Scholar
  55. 55.
    D. Fragiadakis and P. Pissis, J. Non-Cryst. Solids 353, 4344 (2007).CrossRefGoogle Scholar
  56. 56.
    V. Bershtein, V. Gun’ko, L. Egorova, N. Guzenko, E. Pakhlov, E. Ryzhov, and V. Zarko, Polymer 50, 860 (2009).CrossRefGoogle Scholar
  57. 57.
    M. De Sarkar and P. Deb, Adv. Polym. Technol. 27 (3), 152 (2008).CrossRefGoogle Scholar
  58. 58.
    R. B. Bogoslovov, C. M. Roland, A. R. Ellis, A. M. Randall, and C. G. Robertson, Macromolecules 41, 1289 (2008).CrossRefGoogle Scholar
  59. 59.
    G. A. Huber and T. Vilgi, Macromolecules 35, 9204 (2002).CrossRefGoogle Scholar
  60. 60.
    M. Bailly, M. Kontopoulou, and K. El Mabrouk, Polymer 51 (23), 5506 (2010).CrossRefGoogle Scholar
  61. 61.
    A. Navrotsky, J. Chem. Thermodyn. 39, 2 (2007).CrossRefGoogle Scholar
  62. 62.
    T. Theppradit, P. Prasassarakich, and S. Poompradub, Mater. Chem. Phys. 148, 940 (2014).CrossRefGoogle Scholar
  63. 63.
    S. Chen, J. Appl. Polym. Sci. 15, 1247 (1971).CrossRefGoogle Scholar
  64. 64.
    A. E. Nesterov, Handbook on Physical Chemistry of Polymers (Naukova Dumka, Kiev, 1984), Vol. 1.Google Scholar
  65. 65.
    C. Hub, S. E. Harton, M. A. Hunt, R. Fink, and H. Ade, J. Polym. Sci., Part B: Polym. Phys. 45, 2270 (2007).CrossRefGoogle Scholar
  66. 66.
    M. Tanahashi, Materials 3, 1593 (2010).CrossRefGoogle Scholar
  67. 67.
    F. Yang and G. L. Nelson, Polym. Adv. Technol. 17, 320 (2006).CrossRefGoogle Scholar
  68. 68.
    M. Tanahashi, M. Hirose, J.-C. Lee, and K. Takeda, Polym. Adv. Technol. 17, 981 (2006).CrossRefGoogle Scholar
  69. 69.
    X. M. Sang, X. J. Yang, Z. D. Cui, S. L. Zhu, and J. Sheng, J. Macromol. Sci., Part B: Phys. 44, 237 (2005).CrossRefGoogle Scholar
  70. 70.
    A. Christmann, P. Ienny, J. C. Quantin, A. S. Caro-Bretelle, and J. M. Lopez-Cuesta, Polymer 52, 4033 (2011).CrossRefGoogle Scholar
  71. 71.
    E. Kontou and G. Anthoulis, J. Appl. Polym. Sci. 105, 1723 (2007).CrossRefGoogle Scholar
  72. 72.
    J. L. H. Chau and S. L.-C. Hsu, Y.-M. Chen, C.-C. Yang, and P. C. F. Hsu, Adv. Powder Technol. 21, 341 (2010).CrossRefGoogle Scholar
  73. 73.
    T. E. Motaung, M. L. Saladino, A. S. Luyt, and D. F. Chillura Martino, Compos. Sci. Technol. 73, 34 (2012).CrossRefGoogle Scholar
  74. 74.
    M. Biswal, S. Mohanty, S. K. Nayak, and P. S. Kumar, Polym. Eng. Sci. 53, 1287 (2013).CrossRefGoogle Scholar
  75. 75.
    Y. Feng, B. Wang, F. Wang, G. Zheng, K. Dai, C. Liu, J. Chen, and C. Shen, J. Reinf. Plast. Compos. 33, 911 (2014)CrossRefGoogle Scholar
  76. 76.
    M. L. Saladino, T. E. Motaung, A. S. Luyt, A. Spinella, G. Nasillo, and E. Caponetti, Polym. Degrad. Stab. 97, 452 (2012).CrossRefGoogle Scholar
  77. 77.
    D. Olmos, S. G. Prolong, and G. Gonzalez-Benito, Composites, Part B 61, 307 (2014).CrossRefGoogle Scholar
  78. 78.
    X. Chen, J. Gug, and M. J. Sobkowicz, Compos. Sci. Technol 95, 8 (2014).CrossRefGoogle Scholar
  79. 79.
    P. Klonos, I. Ya. Sulym, K. Kyriakos, I. Vangelidis, S. Zidropoulos, D. Sternik, M. V. Borysenko, A. Kyritsis, A. Derylo-Marczewska, V. M. Gun’ko, and P. Pissis, Polymer 68, 158 (2015).CrossRefGoogle Scholar
  80. 80.
    R. R. Madathingal and S. L. Wunder, Langmuir 26 (7), 5077 (2010).CrossRefGoogle Scholar
  81. 81.
    J. Z. Ma, Y. H. Liu, Y. Bao, J.-L. Liu, and J. Zhang, Adv. Colloid Interface Sci. 197–198, 118 (2013).CrossRefGoogle Scholar
  82. 82.
    R. G. Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2012).CrossRefGoogle Scholar
  83. 83.
    V. V. Kazakova, A. N. Ozerin, and A. M. Muzafarov, in Silicones and Silicone-Modified Materials, Ed. by S. J. Clarson, J. J. Fitzgerald, and M. J. Owen (Am. Chem. Soc, Washington, DC, 2000).Google Scholar
  84. 84.
    N. V. Voronina, I. B. Meshkov, V. D. Myakushev, T.V. Laptinskaya, V. S. Papkov, M. I. Buzin, M. N. Il’ina, A. N. Ozerin, and A. M. Muzafarov, J. Polym. Sci., Part A: Polym. Chem. 48, 4310 (2010).CrossRefGoogle Scholar
  85. 85.
    N. V. Voronina, I. B. Meshkov, V. D. Myakushev, N. V. Demchenko, T. V. Laptinskaya, and A. M. Muzafarov, Nanotechnol. Russ. 3 (5), 321 (2008).CrossRefGoogle Scholar
  86. 86.
    A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. M. Vyakushev, M. A. Obrezkova, I. V. Meshkov, N. V. Voronina, and O. V. Novozhilov, Polym. Sci., Ser. C 53 (1), 48 (2011).CrossRefGoogle Scholar
  87. 87.
    V. V. Kazakova, A. S. Zhiltsov, O. B. Gorbatsevich, I. B. Meshkov, M. V. Pletneva, N. B. Demchenko, G. V. Cherkaev, and A. M. Muzafarov, J. Inorg. Organomet. Polym. 22, 564 (2012).CrossRefGoogle Scholar
  88. 88.
    O. A. Serenko, M. V. Mironova, N. A. Novozhilova, P. V. Strashnov, E. V. Getmanova, A. A. Askadskii, V. G. Shevchenko, V. G. Kulichikhin, and A. M. Muzafarov, Mater. Chem. Phys. 156, 16 (2015).CrossRefGoogle Scholar
  89. 89.
    A. Zhiltsov, O. Gritsenko, V. Kazakova, O. Gorbatsevitch, N. Bessonova, A. Askadskii, O. Serenko, and A. Muzafarov, J. Appl. Polym. Sci. (2015) (in press). doi 10.1002/app.41894Google Scholar
  90. 90.
    E. A. Karpukhina, S. O. Il’in, V. V. Makarova, I. B. Meshkov, and V. G. Kulichikhin, Polym. Sci., Ser. A 56 (6), 798 (2014).CrossRefGoogle Scholar
  91. 91.
    V. I. Roldughin, O. A. Serenko, E. V. Getmanova, N. A. Novozhilova, G. G. Nikifirova, M. I. Buzin, S. N. Chvalun, A. N. Ozerin, and A. M. Muzafarov, Polym. Comp. (in press)(2014). doi 10.1002/pc.23376Google Scholar
  92. 92.
    V. I. Roldugin, O. A. Serenko, E. V. Getmanova, N. A. Karmishina, S. N. Chvalun, and A. M. Muzafarov, Dokl. Phys. Chem. 449, 83(2013).CrossRefGoogle Scholar
  93. 93.
    N. A. Novozhilova, O. A. Serenko, V. I. Roldugin, A. A. Askadskii, and A. M. Muzafarov, Silicon 7, 155 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations