Polymer Science Series C

, Volume 58, Issue 1, pp 50–61 | Cite as

Polymer composite materials based on thermoset epoxy binders modified with diamond-containing nanofillers

  • T. S. KurkinEmail author
  • E. P. Tikunova
  • A. V. Solopchenko
  • M. Yu. Yablokova
  • A. N. Ozerin


Structural features and physicochemical properties of promising diamond-containing modifier fillers for industrial polymers, namely, detonation nanodiamonds and nanodiamond soot, are considered. Experimental results demonstrating the possibility to create prepregs with the use of the carbon fabric 1.5 К and a detonation-diamond soot-modified binder based on the epoxy-resin mixture Epikote828/Epikote154 with an anhydride-type curing agent are presented. The rheological characteristics of the diamond-sootmodified binder remain practically the same after storage for 2 or 3 days at room temperature. The dependence of the glass-transition temperatures of the binders on the content of diamond soot in the concentration range 0.025–0.1 wt % is studied, and the correlation between these results and the mechanical characteristics (breaking strength, flexural strength, and crack resistance) of the cured binders is ascertained. Within the entire range of diamond-soot concentrations, the parameters of gelation are determined and the activation energies of this process are calculated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Yu. Dolmatov, Detonation Diamonds. Production, Properties, Application (Nauchno-proizvodstvennoe ob"edinenie “Professional”, St. Petersburg, 2011) [in Russian].Google Scholar
  2. 2.
    V. Yu. Dolmatov and T. Fudzhimura, Sverkhtverd. Mater., No. 6, 34 (2001).Google Scholar
  3. 3.
    V. Yu. Dolmatov, Ultradispersed Detonation Diamonds: production, synthesis, application (SPbGU, St. Petersburg, 2003) [in Russian].Google Scholar
  4. 4.
    P. Chen, F. Huang, and S. Yun, Carbon 41 (11), 2093 (2003).CrossRefGoogle Scholar
  5. 5.
    X. Tao, X. Kang, and Z. Jiazheng, Mater. Sci. Eng., B 38 (1–2), L1 (1996).CrossRefGoogle Scholar
  6. 6.
    V. Yu. Dolmatov, Ultradispersed Detonation Diamonds (SPbGPU, St. Petersburg, 2003) [in Russian].Google Scholar
  7. 7.
    A. N. Ozerin, T. S. Kurkin, L. A. Ozerina, and V. Yu. Dolmatov, Crystallogr. Rep. 53 (1), 60 (2008).CrossRefGoogle Scholar
  8. 8.
    V. Yu. Dolmatov, M. V. Veretennikova, V. A. Marchukov, and V. G. Sushchev, Phys. Soild State 46 (4), 611 (2004).CrossRefGoogle Scholar
  9. 9.
    A. Ya. Vul, E. D. Eydelman, L. V. Sharonova, A. E. Aleksenskiy, and S. V. Konyakhin, Diamond Relat. Mater. 20, 279 (2011).CrossRefGoogle Scholar
  10. 10.
    N. Petrova, A. Zhukov, F. Gareeva, A. Koscheev, I. Petrov, and O. Shenderova, Diamond Relat. Mater. 30, 62 (2012).CrossRefGoogle Scholar
  11. 11.
    A. Yu. Neverovskaya, A. P. Voznyakovskii, and V. Yu. Dolmatov, Phys. Solid State 46 (4), 662 (2004).CrossRefGoogle Scholar
  12. 12.
    N. Gibson, O. Shenderova, T. J. M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, and D. Brenner, Diamond Relat. Mater. 18 (4), 620 (2009).CrossRefGoogle Scholar
  13. 13.
    V. G. Sushchev, V. Yu. Dolmatov, V. A. Marchukov, and M. V. Veretennikova, J. Superhard Mater. 30 (5), 297 (2008).CrossRefGoogle Scholar
  14. 14.
    M. R. Ayatollahi, E. Alishahi, and S. Shadlou, Int. J. Fract. 170, 95 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. J. Zhai, Z. C. Wang, W. Huang, J. J. Huang, Y. Y. Wang, and Y. Q. Zhao, Mater. Sci. Eng., A 528, 7295 (2011).CrossRefGoogle Scholar
  16. 16.
    E. Koumoulos, P. Jagadale, A. Lorenzi, A. Tagliaferro, C. Charitidis, Composites, Part B 80, 27 (2015).CrossRefGoogle Scholar
  17. 17.
    S. N. Monteiro, G. Wagner de Menezes, G. S. Bobrovnitchii, and A.L Ana Lucia Dieges Skury, Diamond Relat. Mater. 16, 974 (2007).CrossRefGoogle Scholar
  18. 18.
    I. Neitzel, V. Mochalin, I. Knoke, G. R. Palmese, and Y. Gogotsi, Compos. Sci. Technol. 71, 710 (2011).CrossRefGoogle Scholar
  19. 19.
    A. S. Barnard and M. Sternberg, Diamond Relat. Mater 16, 2078 (2007).CrossRefGoogle Scholar
  20. 20.
    A. Kruger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, and A. E. Aleksenskii, Carbon 43, 1722 (2005).CrossRefGoogle Scholar
  21. 21.
    G. R. Palmese and R. L. McCullough, J. Appl. Polym. Sci. 46, 1863 (1992).CrossRefGoogle Scholar
  22. 22.
    G. V. Sakovich, V. F. Komarov, and E. A. Petrov, Sverkhtverd. Mater., No. 3, 3 (2002).Google Scholar
  23. 23.
    L. A. Petrova, A. L. Vereshchagin, and V. V. Novoselov, Sverkhtverd. Mater., No. 4, 3 (1989).Google Scholar
  24. 24.
    G. V. Sakovich and V. D. Gubarevich, Zh. Vses. Khim. O-va im. D.I. Mendeleeva 35 (5), 600 (1990).Google Scholar
  25. 25.
    I. I. Kulakova, B. N. Tarasevich, A. P. Rudenko, N. Dorzhpalamyn, and T. M. Gubarevich, Vestn. Mosk. Univ., Ser. 2: Khim. 34 (5), 506 (1993).Google Scholar
  26. 26.
    T. M. Gubarevich, O. F. Turitsina, L. I. Poleva, and A. V. Tyshetskaya, Zh. Prikl. Khim. 65, 1269 (1992).Google Scholar
  27. 27.
    B. C. Samanta, T. Maity, S. Dalai, and A. K. Banthia, J. Mater. Sci. Technol 24, 272 (2008).Google Scholar
  28. 28.
    V. S. Smentkowski and J. T. Yates, Science 271, 193 (1996).CrossRefGoogle Scholar
  29. 29.
    T. Ando, M. N. Gamo, E. R. Robin, Y. Kazuo, K. Mutsukazu, and S. Yoichiro, Diamond Relat. Mater. 5, 1136 (1996).CrossRefGoogle Scholar
  30. 30.
    Y. Liu, Z. Gu, and J. L. Margrave, Chem. Mater. 16, 3924 (2004).CrossRefGoogle Scholar
  31. 31.
    A. Krueger and T. Boedeker, Diamond Relat. Mater. 17, 1367 (2008).CrossRefGoogle Scholar
  32. 32.
    T. Tsubota, S. Tanii, S. Ida, M. Nagata, and Y. Matsumoto, Diamond Relat. Mater. 13, 1093 (2004).CrossRefGoogle Scholar
  33. 33.
    T. Tsubota, S. Ida, O. Hirabayashi, S. Nagaoka, M. Nagataa, and Y. Matsumoto, Phys. Chem. Chem. Phys. 4, 3881 (2002).CrossRefGoogle Scholar
  34. 34.
    J. B. Miller, Surf. Sci. 439, 21 (1999).CrossRefGoogle Scholar
  35. 35.
    E. Basiuk, A. Santamaria-Bonfil, V. Meza-Laguna, T. Gromovoy, E. Alvares-Zauco, F. Contreras-Torres, J. Rizo, G. Zavata, and V. Basiuk, Appl. Surf. Sci. 275, 324 (2013).CrossRefGoogle Scholar
  36. 36.
    H. Zhang, Y. T. Liu, R. Wang, X. Yu, X. Qu, and Q. Zhang, Chin. Chem. Lett. 22, 485 (2011).CrossRefGoogle Scholar
  37. 37.
    I. Nietzel, V. N. Mochalin, J. Niu, J. Cuadra, A. Kontsos, G. R. Palmese, and Y. Gogotsi, Polymer 53, 5965 (2012).CrossRefGoogle Scholar
  38. 38.
    V. N. Mochalin, I. Neitzel, B. J. M. Etzold, A. Peterson, G. Palmese, and Y. Gogotsi, ACS Nano 5 (9), 7494 (2011).CrossRefGoogle Scholar
  39. 39.
    S. Rakha, N. Ali, Y. Halem, F. Alam, A. Khurram, and A. Munir, J. Mater. Sci. Technol. 30 (8), 753 (2014).CrossRefGoogle Scholar
  40. 40.
    E. P. Tikunova, Yu. V. Kostina, T. S. Kurkin, M. Yu. Yablokova, and A. N. Ozerin, Polym. Sci., Ser. B 57 (1), 39 (2015).CrossRefGoogle Scholar
  41. 41.
    V. I. Irzhak, B. A. Rozenberg, and N. S. Enikolopov, Cross-Linked Polymer (Nauka, Moscow, 1979) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. S. Kurkin
    • 1
    Email author
  • E. P. Tikunova
    • 1
  • A. V. Solopchenko
    • 2
  • M. Yu. Yablokova
    • 2
  • A. N. Ozerin
    • 1
  1. 1.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations