Advertisement

Polymer Science Series C

, Volume 57, Issue 1, pp 86–93 | Cite as

Synthesis of amphiphilic block-gradient copolymers of styrene and acrylic acid by Nitroxide Mediated Polymerization

  • O. V. Borisova
  • L. Billon
  • M. Yu. Zaremski
  • O. V. Borisov
Article

Abstract

We present an overview on synthesis of amphiphilic ionic block-gradient copolymers of styrene and acrylic acid by means of one step direct Nitroxide Mediated Polymerization (NMP) and their characterization. The copolymers comprise a block of poly(acrylic acid) and one or two terminal blocks that include co-monomer units of styrene and acrylic acid in variable proportion. Using 1H NMR the gradient sequence of the poly(acrylic acid-co-styrene) copolymer block has been confirmed. In contrast to diblock copolymers of styrene and acrylic acid, that are known to form in aqueous environment “frozen” aggregates with glassy poly(styrene) core, the novel block gradient copolymers exhibit stimuli-responsive aggregation behavior, as was demonstrated by subsequent studies. This feature makes them very promising for design of a large variety of smart functional materials.

Keywords

Styrene Acrylic Acid Polymer Science Series Diblock Copolymer Reactivity Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Zhang and A. Eisenberg, Science 268, 1728 (1995).CrossRefGoogle Scholar
  2. 2.
    I. Astafieva, X. F. Zhong, and A. Eisenberg, Macromolecules 26, 7339 (1993).CrossRefGoogle Scholar
  3. 3.
    I. Astafieva, K. Khougaz, and A. Eisenberg, Macromolecules 28, 7127 (1995).CrossRefGoogle Scholar
  4. 4.
    I. Astafieva, K. Khougaz, and A. Eisenberg, Macromolecules 28, 7135 (1995).CrossRefGoogle Scholar
  5. 5.
    S. U. Groenevagen and A. Egelhaaf, Lapp, and J. R. C. Van der Maarel, Macromolecules 33, 3283 (2000).CrossRefGoogle Scholar
  6. 6.
    C. Burguiere, Ch. Chassenieux, and B. Charleux, Polymer 44, 509 (2003).CrossRefGoogle Scholar
  7. 7.
    E. B. Zhulina and O. V. Borisov, Macromolecules 35, 9191 (2002).CrossRefGoogle Scholar
  8. 8.
    O. V. Borisov, E. B. Zhulina, F. A. M. Leermakers, and A. H. E. Müller, Adv. Polym. Sci. 241, 57 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Schuch, P. Klingler, T. Rossmanith, M. Frechen, J. Gerst, Feldthusen, A. H. E. Müller, Macromolecules 33, 1734 (2000).CrossRefGoogle Scholar
  10. 10.
    M. Burkhardt, N. Martinez-Castro, S. Tea, M. Drechsler, I. Babin, I. Grishagin, R. Schweins, D. V. Pergushov, M. Gradzielski, A. B. Zezin, A. H. E. Müller, Langmuir 23, 12864 (2007).CrossRefGoogle Scholar
  11. 11.
    C. Lefay, B. Charleux, M. Save, Ch. Chassenieux, O. Guerret, and S. Magnet, Polymer 47, 1935 (2006).CrossRefGoogle Scholar
  12. 12.
    L. Couvreur, B. Charleux, O. Guerret, and S. Magnet, Macromol. Chem. Phys. 204, 2055 (2003).CrossRefGoogle Scholar
  13. 13.
    G. Laruelle, J. François, and L. Billon, Macromol. Rapid Commun. 25, 1839 (2004).CrossRefGoogle Scholar
  14. 14.
    O. V. Borisova, L. Billon, M. Zaremski, B. Grassl, Z. Bakaeva, A. Lapp, P. Stepanek, O. V. Borisov, Soft Matter 7, 10824 (2011).CrossRefGoogle Scholar
  15. 15.
    O. V. Borisova, L. Billon, M. Zaremski, B. Grassl, Z. Bakaeva, A. Lapp, P. Stepanek, O. V. Borisov, Soft Matter 8, 7649 (2012).CrossRefGoogle Scholar
  16. 16.
    Yu. D. Semchikov, Makromol. Chem., Macromol. Symp. 111, 317 (1996).CrossRefGoogle Scholar
  17. 17.
    Yu. D. Semchikov, D. A. Smirnova, and S. D. Zaicev, Polym. Sci., Ser. A 37(5), 741 (1995).Google Scholar
  18. 18.
    Yu. D. Semchikov, D. A. Smirnova, S. A. Bulgakova, T. E. Knyazeva, V. I. Sherstyanyh, N. N. Slavnickaya, Proc. Russ. Acad. Sci. 298(2), 411 (1988).Google Scholar
  19. 19.
    Yu. D. Semchikov, V. V. Izvolenskii, D. A. Smirnova, N. A. Kopylova, T. G. Sveshnikova, Polym. Sci., Ser. B 35(5), 495 (1993).Google Scholar
  20. 20.
    Yu. D. Semchikov, A. V. Ryabov, and V. N. Kataeva, Poly. Sci., Ser. B 14(2), 138 (1972).Google Scholar
  21. 21.
    H. J. Harwood, Makromol. Chem., Macromol. Symp. 10/11, 331 (1987).CrossRefGoogle Scholar
  22. 22.
    K. J. Plochocka, J. Macromol. Sci., Rev. Macromol. Chem. 20, 67 (1981).CrossRefGoogle Scholar
  23. 23.
    Yu. D. Semchikov, D. A. Smirnova, S. A. Bulgakova, V. I. Sherstyanyh, T. E. Knyazeva, N. N. Slavnickaya, Polym. Sci., Ser. B 29(3), 220 (1987).Google Scholar
  24. 24.
    S. D. Zaicev, T. E. Knyazeva, I. B. Myasnikova, Yu. D. Semchikov, D. A. Smirnova, Polym. Sci., Ser. A 40(8), 1271 (1998).Google Scholar
  25. 25.
    Yu. D. Semchikov, L. A. Smirnova, T. Ye. Knyazeva, S. A. Bulgakova, V. I. Sherstyanykh, Eur. Polym. J. 26, 883 (1990).CrossRefGoogle Scholar
  26. 26.
    A. V. Ryabov, Yu. D. Semchikov, and N. N. Slavnickaya, Polym. Sci., Ser. A 12(3), 553 (1970).Google Scholar
  27. 27.
    S. Harrisson, F. Ercole, and B. W. Muir, Polym. Chem. 1, 326 (2010).CrossRefGoogle Scholar
  28. 28.
    R. Kerber, Makromol. Chem. 96, 3 (1966).CrossRefGoogle Scholar
  29. 29.
    S. Wang and G. W. Poehlein, J. Appl. Polym. Sci. 49, 991 (1993).CrossRefGoogle Scholar
  30. 30.
    E. C. Chapin, G. E. Ham, and C. L. Mills, J. Polym. Sci. 4, 597 (1949).CrossRefGoogle Scholar
  31. 31.
    S. Toppet, M. Slinckx, and G. Smets, J. Polym. Sci., Polym. Chem. Ed. 13, 1879 (1975).CrossRefGoogle Scholar
  32. 32.
    L. Couvreur, B. Charleux, O. Guerret, and S. Magnet, Macromol. Chem. Phys. 204, 2055 (2003).CrossRefGoogle Scholar
  33. 33.
    B. Lessard, S. C. Schmidt, and M. Mari, Macromolecules 41, 3446 (2008).CrossRefGoogle Scholar
  34. 34.
    M. Finemann and S. D. Ross, J. Polym. Sci. 5, 259 (1950).CrossRefGoogle Scholar
  35. 35.
    T. Kelen and F. Tüdos, J. Macromol. Sci. Chem. 9, 1 (1975).CrossRefGoogle Scholar
  36. 36.
    K. Karaky, E. Pere, C. Pouchan, J. Desbrières, C. Derail, L. Billon, Soft Matter 2, 770 (2006).CrossRefGoogle Scholar
  37. 37.
    K. Karaky, L. Billon, C. Pouchan, J. Desbrières, Macromolecules 40, 458 (2007).CrossRefGoogle Scholar
  38. 38.
    N. Cherifi, A. Issoulie, A. Khoukh, A. Benaboura, M. Save, C. Derail, L. Billon, Polym. Chem. 2, 1769 (2011).CrossRefGoogle Scholar
  39. 39.
    W. Yuan, E. J. Laprade, K. J. Henderson, and K. R. Shull, Soft Matter 10, 1142 (2014).CrossRefGoogle Scholar
  40. 40.
    W. Yuan, M. M. Mok, J. K. Kim, C. L. H. Wong, C. M. Dettmer, S. B. T. Nguen, J. M. Torkelson, K. R. Shull, Langmuir 26, 3261 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. V. Borisova
    • 1
    • 2
  • L. Billon
    • 1
  • M. Yu. Zaremski
    • 2
  • O. V. Borisov
    • 1
    • 3
  1. 1.CNRS, UMR 5254-IPREM-Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les MatériauxUniversité de Pau & Pays de l’AdourPauFrance
  2. 2.Department of Polymer ScienceMoscow State UniversityMoscowRussia
  3. 3.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations