Polymer Science Series C

, Volume 55, Issue 1, pp 154–161 | Cite as

Mathematical simulation of lysine dendrimers: Temperature dependences

  • I. M. Neelov
  • D. A. Markelov
  • S. G. Falkovich
  • M. Yu. Ilyash
  • B. M. Okrugin
  • A. A. Darinskii


The mathematical simulation of second- and fourth-generation lysine dendrimers is performed via the molecular-dynamics method. Temperature dependences of primary structural characteristics are obtained. It is shown that the sizes and atomic distributions of these dendrimers are weakly temperature-dependent. Together with the structural properties, the local mobility of CH2 groups in the dendrimers is investigated via the molecular-dynamics method and NMR spectroscopy. It is shown that the orientational mobility of internal groups of the lysine dendrimers is lower than that of terminal groups, in agreement with the data available for flexible-chain dendrimers. Changes in correlation times with temperature are well described by the Arrhenius dependence. At the same time, the orientational mobility of internal groups in the lysine dendrimers depends on the generation number. This behavior is different from that of flexible-chain dendrimers, in which the mobility of internal groups is the same for dendrimers of different generations.


Polymer Science Series Lysine Residue Terminal Group Molecular Dynamic Method Internal Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Buhleier, W. Wehner, and F. Vogtle, Synthesis, 2(2), 155 (1978).CrossRefGoogle Scholar
  2. 2.
    G. R. Newkome, Z.-Q. Yao, G. R. Baker, and V. K. Gupta, J. Org. Chem. 50, 2003 (1985).CrossRefGoogle Scholar
  3. 3.
    D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, Polym. J. Jpn. 17, 117 (1985).CrossRefGoogle Scholar
  4. 4.
    C. Hawker and J. M. J. Frechet, J. Chem. Soc., Chem. Commun., 1010 (1990).Google Scholar
  5. 5.
    R. G. Denkewalter, J. Kolc, and W. J. Lukasavage, US Patent 4289872 (1981).Google Scholar
  6. 6.
    R. G. Denkewalter, J. Kolc, and W. J. Lukasavage, US Patent 4410688 (1983).Google Scholar
  7. 7.
    L. Crespo, G. Sanclimens, M. Pons, E. Giralt, M. Royo, and F. Albericio, Chem. Rev. 105, 1663 (2005).CrossRefGoogle Scholar
  8. 8.
    J. P. Tam, Y.-A. Lu, and J.-L. Yang, Eur. J. Biochem. 269, 923 (2002).CrossRefGoogle Scholar
  9. 9.
    B. Klajnert, J. Janiszewska, Z. Urbanczyk-Lipkowska, M. Bryszewska, D. Shcharbin, and M. Labieniec, Int. J. Pharm. 309, 208 (2006).CrossRefGoogle Scholar
  10. 10.
    I. M. Neelov, A. Janaszewska, B. Klajnert, M. Bryszewska, Z. Makova, D. Hicks, H. Pearson, G. P. Vlasov, M. Yu. Ilyash, D. S. Vasilev, N. M. Dubrovskaya, N. L. Tumanova, I. A. Zhuravin, A. J. Turner, and N. N. Nalivaeva, Curr. Med. Chem. 20, 134 (2013).Google Scholar
  11. 11.
    Q. Yu, Y. Mu, L. Nordenskiold, and J. P. Tam, in Understanding Biology Using Peptides, Ed. by E. Blondelle (Amer. Peptide Soc., 2005).Google Scholar
  12. 12.
    S. Javor, E. Delort, T. Darbre, and J.-L. Reymond, J. Am. Chem. Soc. 129, 9 (2007).CrossRefGoogle Scholar
  13. 13.
    S. Javor and J.-L. Reymond, J. Org. Chem. 74, 3665 (2009).CrossRefGoogle Scholar
  14. 14.
    B. P. Roberts, M. J. Scanlon, G. Y. Krippner, and D. K. Chalmers, Macromolecules 42, 2775 (2009).CrossRefGoogle Scholar
  15. 15.
    B. P. Roberts, G. Y. Krippner, M. J. Scanlon, and D. K. Chalmers, Macromolecules 42, 2784 (2009).CrossRefGoogle Scholar
  16. 16.
    G. P. Vlasov, V. I. Korol’kov, G. A. Pankova, I. I. Tarasenko, A. N. Baranov, P. B. Glazkov, A. V. Kiselev, O. V. Ostapenko, E. A. Lesina, and V. S. Baranov, Bioorg. Khim. 30, 15 (2004).Google Scholar
  17. 17.
    J. M. Frechet and D. A. Tomalia, Dendrimers and Other Dendritic Polymers (Wiley, New York, 2002); S. M. Grayson and J. M. Frechet, J. Chem. Rev. 101, 3819 (2001).Google Scholar
  18. 18.
    HyperChem(TM) Professional 7.5 (Hypercube, Gainesville, FL).Google Scholar
  19. 19.
    B. Hess, C. Kutzner, D. Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).CrossRefGoogle Scholar
  20. 20.
    D. A. Markelov, V. V. Matveev, P. Ingman, M. N. Nikolaeva, E. Lahderanta, V. A. Shevelev, and N. I. Boiko, J. Phys. Chem. B 114, 4159 (2010).CrossRefGoogle Scholar
  21. 21.
    R. Novoa-Carballal, E. Sawen, E. Fernandez-Megia, J. Correa, R. Riguera, and G. Widmalm, Phys. Chem. Chem. Phys. 12, 6587 (2010).CrossRefGoogle Scholar
  22. 22.
    D. A. Markelov, V. V. Matveev, P. Ingman, E. Lahderanta, and N. I. Boiko, J. Chem. Phys. 135, 124901 (2011).CrossRefGoogle Scholar
  23. 23.
    D. A. Markelov, M. A. Mazo, N. K. Balabaev, and Yu. Ya. Gotlib, Polymer Sci. Ser. A 55, No. 1 (2013).Google Scholar
  24. 24.
    Yu. Ya. Gotlib and D. A. Markelov, Polymer Sci., Ser. A 49, 1137 (2007).CrossRefGoogle Scholar
  25. 25.
    D. A. Markelov, Yu. Ya. Gotlib, A. A. Darinskii, A. V. Lyulin, and S. V. Lyulin, Polymer Sci., Ser. A 51, 331 (2009).CrossRefGoogle Scholar
  26. 26.
    D. A. Markelov, S. V. Lyulin, Yu. Ya. Gotlib, A. V. Lyulin, V. V. Matveev, E. Lahderanta, and A. A. Darinskii, J. Chem. Phys. 130, 044907 (2009).CrossRefGoogle Scholar
  27. 27.
    Yu. Ya. Gotlib and A. I. Neelov, Polymer Sci., Ser. A 45, 993 (2003).Google Scholar
  28. 28.
    M. A. Mazo, M. Yu. Shamaev, N. K. Balabaev, A. A. Darinskii, and I. M. Neelov, Phys. Chem. Chem. Phys. 6, 1285 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. M. Neelov
    • 1
  • D. A. Markelov
    • 1
    • 2
  • S. G. Falkovich
    • 1
    • 2
  • M. Yu. Ilyash
    • 1
  • B. M. Okrugin
    • 1
    • 2
  • A. A. Darinskii
    • 1
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Faculty of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations