Polymer Science Series C

, Volume 55, Issue 1, pp 212–218 | Cite as

Atomistic simulations of cavitation in a model polyethylene network

  • Athanasios K. Morozinis
  • Christos Tzoumanekas
  • Stefanos D. Anogiannakis
  • Doros N. Theodorou


A molecular-level understanding of cavitation in polymer networks upon imposition of mechanical stress is still lacking. Molecular Dynamics simulations of crosslinked amorphous Polyethylene (PE) were conducted in order to study cavitation as a function of the prevailing stress. We first show that the characteristic relaxation times related to tube confinement and chain connectivity can be obtained by examining the mean square displacement of middle chain monomers. Then, we present a methodology for predicting the cavitation strength and understanding its dependence on cohesive interactions and entropic elasticity. Our simulations show that experimental observations and predictions of continuum mechanics analysis, which relate the critical stress for cavitation to the Young’s modulus of the rubber, are in agreement with the observed tensile triaxial stress below which a pre-existing cavity cannot survive in a cavitated sample.


Cavitation Polymer Science Series Molecular Dynamic Trajectory Characteristic Relaxation Time Entanglement Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Gent, Int. J. Non-Linear Mech. 40, 165 (2005).CrossRefGoogle Scholar
  2. 2.
    K. R. Brown and C. Creton, Eur. Phys. J. E 9, 35 (2002).Google Scholar
  3. 3.
    P. Debenedetti and Reiss, J. Chem. Phys. 108, 5498 (1998).CrossRefGoogle Scholar
  4. 4.
    T. T. Bazhirov, G. E. Norman, and V. V. Stegailov, Dokl. Phys. 50, 570 (2005).CrossRefGoogle Scholar
  5. 5.
    T. T. Bazhirov, G. E. Norman, and V. V. Stegailov, J. Phys.: Condens. Matter 20, 114113 (2008).CrossRefGoogle Scholar
  6. 6.
    I. C. Sanchez and R. H. Lacombe, J. Phys. Chem. 80, 2352 (1976).CrossRefGoogle Scholar
  7. 7.
    A. N. Gent and P. B. Lindley, Proc. R. Soc. London A, Math. Phys. Sci. 249, 195 (1959).CrossRefGoogle Scholar
  8. 8.
    A. N. Gent and D. A. Tompkins, J. Appl. Phys. 40, 2520 (1969).CrossRefGoogle Scholar
  9. 9.
    J. A. Zimberlin, N. Sanabria-Delong, G. N. Tew, and A. J. Crosby, Soft Matter 3, 763 (2007).CrossRefGoogle Scholar
  10. 10.
    C. Fond, J. Polym. Sci., Part B: Polym. Phys. 39, 2081 (2001).CrossRefGoogle Scholar
  11. 11.
    A. Cristiano, A. Marcellan, R. Long, C. Y. Hui, J. Stolk, and C. Creton, J. Polym. Sci., Part B: Polym. Phys. 48, 1409 (2010).CrossRefGoogle Scholar
  12. 12.
    A. Cristiano, A. Marcellan, B. J. Keestra, P. Steeman, and C. Creton, J. Polym. Sci., Part B: Polym. Phys. 49, 355 (2011).CrossRefGoogle Scholar
  13. 13.
    O. Lopez-Pamies, M. I. Idiart, and T. Nakamura, J. Mech. Phys. Solids 59, 1464 (2011).CrossRefGoogle Scholar
  14. 14.
    M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 102, 2569 (1998).CrossRefGoogle Scholar
  15. 15.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995); CrossRefGoogle Scholar
  16. 16.
    N. C. Karayiannis, A. E. Giannousaki, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys. 117, 5465 (2002).CrossRefGoogle Scholar
  17. 17.
    R. Auhl, R. Everaers, G. S. Grest, K. Kremer, and S. J. Plimpton, J. Chem. Phys. 119, 12718 (2003).CrossRefGoogle Scholar
  18. 18.
    C. Tzoumanekas and D. N. Theodorou, Macromolecules 39, 4592 (2006).CrossRefGoogle Scholar
  19. 19.
    P. G. De Gennes, J. Chem. Phys. 55, 572 (1971).CrossRefGoogle Scholar
  20. 20.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).Google Scholar
  21. 21.
    W. W. Graessley and S. F. Edwards, Polymer 22, 1329 (1981).CrossRefGoogle Scholar
  22. 22.
    A. K. Morozinis, C. Tzoumanekas, and D. N. Theodorou (in preparation).Google Scholar
  23. 23.
    R. Everaers, New J. Phys. 1, 12.1 (1999).CrossRefGoogle Scholar
  24. 24.
    S. F. Edwards, H. Takano, and E. M. Terentjev, J. Chem. Phys. 113, 5531 (2000).CrossRefGoogle Scholar
  25. 25.
    B. Mergell and R. Everaers, Macromolecules 34, 5675 (2001).CrossRefGoogle Scholar
  26. 26.
    M. Rubinstein and S. Panyukov, Macromolecules 35, 6670 (2002).CrossRefGoogle Scholar
  27. 27.
    Z. Wang, A. E. Likhtman, and R. G. Larson, Macromolecules 45, 3557 (2012).CrossRefGoogle Scholar
  28. 28.
    J. Ramos, J. F. Vega, D. N. Theodorou, and J. Martinez-Salazar, Macromolecules 41, 2959 (2008).CrossRefGoogle Scholar
  29. 29.
    J. M. Adams, Y. Mao, W. L. Vandoolaeghe, J. Chem. Phys. 127, 114907 (2007).CrossRefGoogle Scholar
  30. 30.
    P. A. Rodgers, J. Appl. Polym. Sci. 48, 1061 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Athanasios K. Morozinis
    • 1
    • 2
  • Christos Tzoumanekas
    • 1
    • 2
  • Stefanos D. Anogiannakis
    • 1
  • Doros N. Theodorou
    • 1
    • 2
  1. 1.School of Chemical Engineering, Department of Materials Science and EngineeringNational Technical University of AthensAthensGreece
  2. 2.Dutch Polymer InstituteEindhovenThe Netherlands

Personalised recommendations