Polymer Science Series C

, Volume 54, Issue 1, pp 21–29 | Cite as

Compaction of DNA in solutions of highly charged proteins carrying the same charge as DNA

  • M. K. Krotova
  • V. V. Vasilevskaya
  • A. R. Khokhlov
Article

Abstract

The theory of DNA compaction in solutions of highly charged proteins carrying charge of the same sign as DNA is developed. It is shown that the introduction of a negatively charged protein may induce the collapse of DNA that occurs as a first-order phase transition. The concentration of protein in the vicinity of DNA practically coincides with the concentration of protein in solution on the whole, and the introduction of protein into a solution is equivalent to the effective worsening of solvent quality. The higher the absolute value of the protein charge, the more pronounced this worsening. The higher the charge of the protein, the smaller its content that causes the compaction of DNA. The properties of the transition depend on the effective charge of DNA and on the concentration of a low-molecular-mass salt. An increase in the concentration of the salt may weaken the action of protein as a compaction agent and cause the reverse transition of a DNA macromolecule to the coiled state.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Lerman, Proc. Natl. Acad. Sci. U. S. A. 68, 1886 (1971).CrossRefGoogle Scholar
  2. 2.
    L. Lerman, in Physico-Chemical Properties of the Nucleic Acids, Ed. by J. Duchesne (Academic, London, 1973), p. 59.Google Scholar
  3. 3.
    U. K. Laemmli, J. K. Paulson, and V. Hitchins, J. Supramol. Struct. 2, 276 (1974).CrossRefGoogle Scholar
  4. 4.
    N. A. Chebotareva, B. I. Kurganov, and N. B. Livanova, Biokhimiya (Moscow) 69, 1522 (2004).Google Scholar
  5. 5.
    D. Miyoshi and N. Sugimoto, Biochimie 90, 1040 (2008).CrossRefGoogle Scholar
  6. 6.
    K. Richter, M. Nessling, and P. Lichter, Biochim. Biophys. Acta 1783, 2100 (2008).CrossRefGoogle Scholar
  7. 7.
    V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).CrossRefGoogle Scholar
  8. 8.
    N. M. Akimenko, E. B. Dijakowa, Yu. M. Evdokimov, et al., FEBS Lett. 38, 61 (1973).CrossRefGoogle Scholar
  9. 9.
    U. K. Laemmli, Proc. Natl. Acad. Sci. U. S. A. 72, 4288 (1975).CrossRefGoogle Scholar
  10. 10.
    V. V. Vasilevskaya, A. R. Khokhlov, Y. Matsuzawa, and K. Yoshikawa, J. Chem. Phys. 102, 6595 (1995).CrossRefGoogle Scholar
  11. 11.
    A. A. Zinchenko and K. Yoshikawa, Biophys. J. 88, 4118 (2005).CrossRefGoogle Scholar
  12. 12.
    J. Kapuscinski and Z. Darzynkiewicz, Proc. Natl. Acad. Sci. U. S. A. 81, 7368 (1984).CrossRefGoogle Scholar
  13. 13.
    L. S. Gosule and J. A. Schellman, Nature (London) 259, 333 (1976).CrossRefGoogle Scholar
  14. 14.
    L. S. Gosule and J. A. Schellman, J. Mol. Biol. 121, 311 (1978).CrossRefGoogle Scholar
  15. 15.
    K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov, Phys. Rev. Lett. 76, 3029 (1996).CrossRefGoogle Scholar
  16. 16.
    D. K. Chattoraj, L. S. Gosule, and J. A. Schellman, J. Mol. Biol. 121, 327 (1978).CrossRefGoogle Scholar
  17. 17.
    R. W. Wilson and V. A. Bloomfield, Biochemistry 18, 2192 (1979).CrossRefGoogle Scholar
  18. 18.
    M. Takahashi, K. Yoshikawa, V. V. Vasilevskaya, and A. R. Khokhlov, J. Phys. Chem. 101, 9396 (1997).CrossRefGoogle Scholar
  19. 19.
    J. Widom and R. L. Baldwin, J. Mol. Biol. 144, 431 (1980).CrossRefGoogle Scholar
  20. 20.
    V. V. Vasilevskaya, A. R. Khokhlov, S. Kidoaki, and K. Yoshikawa, Biopolymers 41, 51 (1997).CrossRefGoogle Scholar
  21. 21.
    V. A. Bloomfield, Biopolymers 31, 1471 (1991).CrossRefGoogle Scholar
  22. 22.
    S.-M. Cheng and S. C. Mohr, Biopolymers 14, 663 (1975).CrossRefGoogle Scholar
  23. 23.
    C. B. Post and B. C. Zimm, Biopolymers 21, 2139 (1982).CrossRefGoogle Scholar
  24. 24.
    R. Huey and S. C. Mohr, Biopolymers 20, 2533 (1981).CrossRefGoogle Scholar
  25. 25.
    S. M. Melnikov, V. G. Sergeev, and K. Yoshikawa, J. Am. Chem. Soc. 117, 2401 (1995).CrossRefGoogle Scholar
  26. 26.
    O. E. Philippova, T. Akitaya, I. R. Mullagaliev, et al., Macromolecules 38, 9359 (2005).CrossRefGoogle Scholar
  27. 27.
    J. Naghizadah and A. R. Massih, Phys. Rev. Lett. 40, 1299 (1978).CrossRefGoogle Scholar
  28. 28.
    C. B. Post and B. H. Zimm, Biopolymers 18, 1487 (1979).CrossRefGoogle Scholar
  29. 29.
    C. B. Post and B. H. Zimm, Biopolymers 21, 2123 (1982).CrossRefGoogle Scholar
  30. 30.
    A. Yu. Grosberg, I. Ya. Erukhimovich, and E. I. Shakhnovich, Biofizika 24, 415 (1981).Google Scholar
  31. 31.
    A. Yu. Grosberg, I. Ya. Erukhimovich, and E. I. Shakhnovich, Biopolymers 21, 2413 (1982).CrossRefGoogle Scholar
  32. 32.
    H. L. Frisch and S. J. Fesciyan, J. Polym. Sci., Part C: Polym. Lett. 17, 309 (1979).Google Scholar
  33. 33.
    K. Minagawa, Y. Matsuzawa, K. Yoshikawa, A. R. Khokhlov, and M. Doi, Biopolymers 34, 555 (1994).CrossRefGoogle Scholar
  34. 34.
    K. Yoshikawa and Y. Matsuzawa, Physica D (Amsterdam) 84, 220 (1995).CrossRefGoogle Scholar
  35. 35.
    T. Akitaya, A. Seno, T. Nakai, et al., Biomacromolecules 8, 273 (2007).CrossRefGoogle Scholar
  36. 36.
    T. Iwataki, S. Kidoaki, T. Sakaue, et al., J. Chem. Phys. 120, 4004 (2004).CrossRefGoogle Scholar
  37. 37.
    A. A. Zinchenko, D. M. Baigl, N. Chen, et al., Biomacromolecules 9, 1981 (2008).CrossRefGoogle Scholar
  38. 38.
    A. Gonzalez-Perez, J. Carlstedt, R. S. Dias, and B. Lindman, Colloids Surf. B 76, 20 (2010).CrossRefGoogle Scholar
  39. 39.
    S. Kidoaki and K. Yoshikawa, Biophys. J. 71, 932 (1996).CrossRefGoogle Scholar
  40. 40.
    S. Matsumato, K. Morikawa, and M. Yanagida, J. Mol. Biol. 152, 501 (1981).CrossRefGoogle Scholar
  41. 41.
    C. Bustamante, Annu. Rev. Biophys. Biophys. Chem. 20, 415 (1991).CrossRefGoogle Scholar
  42. 42.
    M. K. Krotova, V. V. Vasilevskaya, N. Makita, et al., Phys. Rev. Lett. 105, 128302 (2010).CrossRefGoogle Scholar
  43. 43.
    M. Stevens and K. Kremer, Macromolecules 26, 4717 (1993).CrossRefGoogle Scholar
  44. 44.
    V. V. Vasilevskaya, A. R. Khokhlov, and K. Yoshikawa, Macromol. Theory Simul. 9, 600 (2000).CrossRefGoogle Scholar
  45. 45.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; AIP, Ithaca, 1994).Google Scholar
  46. 46.
    N. P. Shusharina, I. A. Nyrkova, and A. R. Khokhlov, Macromolecules 29, 3167 (1996).CrossRefGoogle Scholar
  47. 47.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, Parts 1 and 2 (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).Google Scholar
  48. 48.
    Ch. Tanford, Physical Chemistry of Polymers (Wiley, New York, 1961; Khimiya, Moscow, 1965).Google Scholar
  49. 49.
    V. V. Vasilevskaya and A. R. Khokhlov, Vysokomol. Soedin., Ser. A 28, 316 (1986).Google Scholar
  50. 50.
    K. Yoshikawa, S. Hirota, N. Makita, and Y. Yoshikawa, J. Phys. Chem. Lett. 1, 1763 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. K. Krotova
    • 1
  • V. V. Vasilevskaya
    • 2
  • A. R. Khokhlov
    • 1
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations