Advertisement

Doklady Biochemistry and Biophysics

, Volume 488, Issue 1, pp 324–326 | Cite as

A New Component in the Mechanism of Regulation of Endogenous Depressive-Like States

  • T. L. Garibova
  • T. A. GudashevaEmail author
  • S. B. Seredenin
BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • 8 Downloads

Abstract

It was shown previously that cycloprolylglycine, an endogenous neuropeptide, is a positive AMPA receptor modulator and is able to increase the content of BDNF in neurons. In the present study, using the model of learned helplessness in rats, we showed that cycloprolylglycine at a dose of 1 mg/kg at subchronic intraperitoneal administration reduced the time of animal immobility to passive control values (from 167.6 to 83.6 s) on day 12 of the experiment. This indicates the presence of antidepressant-like activity. The results of the study allow us to consider cycloprolylglycine as a component in the physiological regulation of the depression-like state.

Notes

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Gudasheva, T.A., Boyko, S.S., Akparov, V.Kh., Ostrovskaya, R.U., Skoldinov, A.P., Rozantsev, G.G., Voronina, T.A., Zherdev, V.P., and Seredenin, S.B., Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolylglycine in rat brain, FEBS Lett., 1996, vol. 391, pp. 149–152.CrossRefGoogle Scholar
  2. 2.
    Tran, L.H., Neuroprotection and neuroegenisis by administering cyclic prolyl glycine, US Patent no. 7232798, 2007.Google Scholar
  3. 3.
    Guan, J., Gluckman, P., Yang, P., Krissansen, G., Sun, X., Zhou, Y., Wen, J., Phillips, G., Shorten, P.R., McMahon, C.D., Wake, G.C., Chan, W.H.K., Tho-mas, M.F., Ren, A., Moon, S., and Liu, D.-X., Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1, Sci. Rep., 2014, vol. 4, p. 4388.CrossRefGoogle Scholar
  4. 4.
    Gudasheva, T.A., Ostrovskaya, R.U., Trofimov, S.S., Voronina, T.A., Skoldinov, A.P., and Seredenin, S.B., New endogenous dipeptide cycloprolyl-glycine is similar to piracetam by its mnemotropic selectivity, Bull. Exp. Biol. Med., 1999, vol. 128, no. 4, pp. 1012–1014.CrossRefGoogle Scholar
  5. 5.
    Gudasheva, T.A., Konstantinopolsky, M.A., Ostrovskaya, R.U., and Seredenin, S.B., Anxiolytic activity of endogenous nootropic dipeptide cycloprolylglycine in elevated plus-maze test, Bull. Exp. Biol. Med., 2001, vol. 131, no. 5, pp. 464–466.CrossRefGoogle Scholar
  6. 6.
    Povarnina, P.Yu., Koliasnikova, K.N., Nikolaev, S.V., Antipova, T.A., and Gudasheva, T.A., Cycloprolylglycine exhibits neuroprotective activity after systemic administration to rats with modeled incomplete global ischemia and in in vitro modeled glutamate neurotoxicity, Bull. Exp. Biol. Med., 2015, vol. 160, no. 11, pp. 653–655.  https://doi.org/10.1007/sl0517-016-3241-5 CrossRefGoogle Scholar
  7. 7.
    Autry, A.E. and Monteggia, L.M., Brain-derived neurotrophic factor and neuropsychiatric disorders, Pharmacol. Rev., 2012, vol. 64, pp. 238–258. doi 11.005108 https://doi.org/10.1124/pr.l
  8. 8.
    Gudasheva, T.A., Koliasnikova, K.N., Antipova, T.A., and Seredenin, S.B., Neuropeptide cycloprolylglycine increases the levels of brain-derived neurotrophic factor in neuronal cells, Dokl. Biochem. Biophys., 2016, vol. 469, pp. 273–276.  https://doi.org/10.1134/S1607672916040104 CrossRefPubMedGoogle Scholar
  9. 9.
    Gudasheva, T.A., Grigoriev, V.V., Kolyasnikova, K.N., Zamoyski, V.L., and Seredenin, S.B., Neuropeptide cycloprolylglycine is an endogenous positive modulator of AMPA receptors, Dokl. Biochem. Biophys., 2016, vol. 471, pp. 387–389.  https://doi.org/10.1134/S160767291606003X CrossRefPubMedGoogle Scholar
  10. 10.
    Lapidus, K.A.B., Soleimani, L., and Murrough, J.W., Novel glutamatergic drugs for the treatment of mood disorders, Neuropsychiatr. Dis. Treat., 2013, vol. 9, pp. 1101–1112.  https://doi.org/10.2147/NDT.S36689 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yin, X., Guven, N., and Dietis, N., Stress-based animal models of depression: do we actually know what we are doing?, Brain. Res., 2016, vol. 1652, pp. 30–42.  https://doi.org/10.1016/j.brainres.2016.09.027 CrossRefPubMedGoogle Scholar
  12. 12.
    Porsolt, R.D., Bertin, A., and Jalfre, M., “Behavioural despair” in rats and mice: strain differences and the effects of imipramine, Eur. J. Pharmacol., 1978, vol. 51, pp. 291–294.CrossRefGoogle Scholar
  13. 13.
    Boiko, S.S., Ostrovskaya, R.U., Zherdev, V.P., Korotkov, S.A., Gudasheva, T.A., Voronina, T.A., and Seredenin, S.B., Pharmacokinetics of new nootropic acylprolyldipeptide and its penetration across the blood-brain barrier after oral administration, Bull. Exp. Biol. Med., 2000, vol. 129 no. 4, pp. 359–361.CrossRefGoogle Scholar
  14. 14.
    Castren, E., Neurotrophins and psychiatric disorders, Handb. Exp. Pharmacol., 2014, vol. 220, pp. 461–479.  https://doi.org/10.1007/978-3-642-45106-5J7 CrossRefPubMedGoogle Scholar
  15. 15.
    Karege, F., Vaudan, G., Schwald, M., Perroud, N., and La Harpe, R., Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs, Mol. Brain Res., 2005, vol. 136, nos. 1–2, pp. 29–37.  https://doi.org/10.1016/j.molbrainres.2004.12.020 CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. L. Garibova
    • 1
  • T. A. Gudasheva
    • 1
    Email author
  • S. B. Seredenin
    • 1
  1. 1.Zakusov Research Institute of Pharmacology, Russian Academy of Medical SciencesMoscowRussia

Personalised recommendations