Advertisement

Doklady Biochemistry and Biophysics

, Volume 488, Issue 1, pp 313–315 | Cite as

Effect of Fabomotizole on Brain Gene Expression in MR Rats in the Open Field Test

  • Yu.V. VakhitovaEmail author
  • U. Sh. Kuzmina
  • M. V. Voronin
  • L. F. Zainullina
  • S. B. Seredenin
BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY

Abstract

Selective anxiolytic fabomotizole (Afobazol®) has affinity for the Sigma-1 chaperone receptor site, quinone reductase 2 (NQO2) and MAO-A regulatory sites, and melatonin receptor type 1 (MT1 receptor). The analysis of the effect of fabomotizole on the gene expression profile in the brain of MR (Maudsley Reactive) rats was carried out when modeling emotional stress in the open field test. A change in the expression of 14 genes was found, the results of the functional annotation of which showed that the mechanisms of action of fabomotizole may be associated with the regulation of translation of proteins (Rpl5, Rpl15, Ncl, and Ybx1), synaptic functions (Cplx2, Dlg4, Syngap1, Add1, Rab8b, Klc1, and Chn1), and cellular metabolism (Akr1d1, Bcat1, and Pkm).

Notes

FUNDING

This work was performed under the State assignment of Zakusov Research Institute of Pharmacology (theme no. 0521-2019-0001).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Neznamov, G.G., Syunyakov, S.A., Chumakov, D.V., et al., Psikhiatr. Psikhofarmakoter., 2006, vol. 8, no. 4, pp. 8–13.Google Scholar
  2. 2.
    Seredenin, S.B., Voronina, T.A., Neznamov, G.G., et al., Vest. Ross. Akad. Med. Nauk, 1998, no. 11, pp. 3–9.Google Scholar
  3. 3.
    Seredenin, S.B. and Voronin, M.V., Eksp. Klin. Farmakol., 2009, vol. 72, no. 1, pp. 3–11.PubMedGoogle Scholar
  4. 4.
    Hayashi, T., Psych. Clin. Neurosci., 2015, vol. 69, no. 4, pp. 179–191.CrossRefGoogle Scholar
  5. 5.
    Cassagnes, L.E., Chhour, M., Perio, P., et al., Free Radic. Biol. Med., 2018, vol. 120, pp. 56–61.CrossRefGoogle Scholar
  6. 6.
    Voronin, M.V., Aksenova, L.N., Buneeva, O.A., et al., Byull. Eksp. Biol. Med., 2009, vol. 147, no. 7, pp. 31–33.CrossRefGoogle Scholar
  7. 7.
    Liu, J., Clough, S.J., and Dubocovich, M.L., Genes, Brain Behav., 2017, vol. 16, no. 5, pp. 546–553.CrossRefGoogle Scholar
  8. 8.
    Darnell, J.C., Curr. Opin. Genet. Dev., 2011, vol. 21, no. 4, pp. 465–473.CrossRefGoogle Scholar
  9. 9.
    Chen, X., Nelson, C.D., Li, X., Winters, C.A., et al., J. Neurosci., 2011, vol. 31, no. 17, pp. 6329–6338.CrossRefGoogle Scholar
  10. 10.
    Su, T.P., Hayashi, T., Maurice, T., et al., Trends Pharmacol. Sci., 2010, vol. 31, no. 12, pp. 557–566.CrossRefGoogle Scholar
  11. 11.
    Seredenin, S.B., Antipova, T.A., Voronin, M.V., et al., Byull. Eksp. Biol. Med., 2009, vol. 148, no. 7, pp. 53–55.CrossRefGoogle Scholar
  12. 12.
    Abramova, E.V., Voronin, M.V., and Seredenin, S.B., Eksp. Klin. Farmakol., 2017, vol. 80, no. 2, pp. 3–7.Google Scholar
  13. 13.
    Lambert, J.J., Cooper, M.A., Simmons, R.D., et al., Psychoneuroendocrinology, 2009, vol. 34, no. Suppl. 1, pp. 48–58.CrossRefGoogle Scholar
  14. 14.
    Kalinina, T., Shimshirt, A., Kudryashov, N., et al., Eur. Neuropsychopharmacol., 2019, vol. 29, pp. 499–S500.CrossRefGoogle Scholar
  15. 15.
    Marriott, K.S., Prasad, M., Thapliyal, V., et al., J. Pharm. Exp. Ther., 2012, vol. 343, no. 3, pp. 578–586.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu.V. Vakhitova
    • 1
    Email author
  • U. Sh. Kuzmina
    • 2
  • M. V. Voronin
    • 1
  • L. F. Zainullina
    • 1
  • S. B. Seredenin
    • 1
  1. 1.Zakusov Research Institute of Pharmacology MoscowRussia
  2. 2.Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of ScienceUfaRussia

Personalised recommendations