Advertisement

Doklady Biochemistry and Biophysics

, Volume 488, Issue 1, pp 307–310 | Cite as

Sigma-1 Receptor Agonist Amitriptyline Inhibits Store-Dependent Ca2+ Entry in Macrophages

  • Z. I. KrutetskayaEmail author
  • L. S. Milenina
  • V. G. Antonov
  • A. D. NozdrachevEmail author
BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • 17 Downloads

Abstract

Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor agonist–tricyclic antidepressant amitriptyline—significantly inhibits store-dependent Ca2+ entry, induced by endoplasmic Ca2+-ATPase inhibitors thapsigargin and cyclopiazonic acid, in rat peritoneal macrophages. The results suggest a possible involvement of sigma-1 receptors in the regulation of store-dependent Ca2+ entry in macrophages.

Notes

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Putney, J.W., Adv. Exp. Med. Biol., 2017, vol. 981, pp. 205–214.CrossRefGoogle Scholar
  2. 2.
    Prakriya, M. and Lewis, R.S., Physiol. Rev., 2015, vol. 95, pp. 1383–1436.CrossRefGoogle Scholar
  3. 3.
    Rousseaux, C.G. and Greene, S.F., J. Recept. Signal Transduct., 2016, vol. 36, pp. 327–388.Google Scholar
  4. 4.
    Penke, B., Fulop, L., Szucs, M., et al., Curr. Neuropharmacol., 2018, vol. 16, pp. 97–116.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Cobos, E.J., Entrena, J.M., Nieto, F.R., et al., Curr. Neuropharmacol., 2008, vol. 6, pp. 344–366.CrossRefGoogle Scholar
  6. 6.
    Villard, V., Meunier, J., Chevallier, N., et al., J. Pharmacol. Sci., 2011, vol. 115, pp. 279–292.CrossRefGoogle Scholar
  7. 7.
    Gillman, P.K., Br. J. Pharmacol., 2007, vol. 151, pp. 737–748.CrossRefGoogle Scholar
  8. 8.
    Milenina, L.S., Krutetskaya, Z.I., Naumova, A.A., Butov, S.N., Krutetskaya, N.I., and Antonov, V.G., Tsitologiya, 2015, vol. 57, no. 7, pp. 518–525.Google Scholar
  9. 9.
    Grynkiewicz, G., Poenie, M., and Tsien, R.Y., J. Biol. Chem., 1985, vol. 260, pp. 3440–3450.PubMedGoogle Scholar
  10. 10.
    Xie, Q., Zhang, Y., Zhai, C., et al., J. Biol. Chem., 2002, vol. 277, pp. 16559 – 16566.CrossRefGoogle Scholar
  11. 11.
    Harper, J.L. and Daly, J.W., Drug Dev. Res., 1999, vol. 47, pp. 107–117.CrossRefGoogle Scholar
  12. 12.
    Brailou, G.C., Deliu, E., Console-Bram, L.M., et al., Biochem. J., 2016, vol. 473, pp. 1–5.CrossRefGoogle Scholar
  13. 13.
    Srivats, S., Balasuriya, D., Pasche, M., et al., J. Cell Biol., 2016, vol. 213, pp. 65–79.CrossRefGoogle Scholar
  14. 14.
    Hamplova-Peichlova, J., Krusek, J., Paclt, I., et al., Physiol. Res., 2002, vol. 51, pp. 317–321.PubMedGoogle Scholar
  15. 15.
    Zahradnik, I., Minarovic, I., and Zahradnikova, Z., J. Pharmacol. Exp. Ther., 2008, vol. 324, pp. 977–984.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Physiology, Russian Academy of Sciences St. PetersburgRussia

Personalised recommendations