Advertisement

Doklady Biochemistry and Biophysics

, Volume 483, Issue 1, pp 374–378 | Cite as

Identification and Analysis of VTC2 Homologs Encoding the Key Enzyme of L-Ascorbic Acid Biosynthesis in Tomato Species (Solanum Section of Lycopersicon)

  • D. U. Tyapkina
  • E. Z. Kochieva
  • M. A. SluginaEmail author
Biochemistry, Biophysics, and Molecular Biology
  • 5 Downloads

Abstract

The complete nucleotide sequences of 11 wild and cultivated tomato GDP-L-galactose-phosphorylase- 1 homologs (VTC2) were identified and characterized. The overall level of nucleotide variability was 9.19%. Totally 25 out of 54 cDNA SNPs were non-synonymous and resulted in amino acid substitutions. In the group of green-fruited tomato species, more SNPs were detected than in the group of red-fruited species, but the percentage of non-synonymous substitutions in red-fruited tomatoes was significantly higher (66.7% vs. 37.5%). In the translated amino acid sequences, the GDF-L-galactose-hexose-1-phosphate-guanyltransferase domain and the highly conserved HIT-motif were identified and a conserved motif specific for VTC2 of Solanoideae species was detected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, D., Meng, L., Ma, N., Yang, X., and Meng, Q., Plant Physiol. Biochem., 2017, vol. 112, article 218e226.Google Scholar
  2. 2.
    Pavet, V., Olmos, E., Kiddle, G., Mowla, S., Kumar, S., Antoniw, J., Alvarez, M.E., and Foyer, C.H., Plant Physiol., 2005, vol. 139, article 1291e1303.Google Scholar
  3. 3.
    Garchery, C., Gest, N., Do, P.T., Alhagdow, M., Baldet, P., Menard, G., Rothan, C., Massot, C., Gautier, H., Aarrouf, J., et al., Plant, Cell Environ., 2013, vol. 36, article 159e175.Google Scholar
  4. 4.
    Barth, C., De Tullio, M., and Conklin, P.L., J. Exp. Bot., 2006, vol. 57, article 1657e1665.Google Scholar
  5. 5.
    Giovannoni, J., Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 22, pp. 9109–9110.CrossRefGoogle Scholar
  6. 6.
    Linster, C.L. and Clarke, S.G., Trends Plant Sci., 2008, vol. 13, no. 11, pp. 567–573.CrossRefGoogle Scholar
  7. 7.
    Oğuz, T., Cantuğ, B., Bilal, Ö., Duygu, Y.Ö., Dane, R., Nilüfer, T., Anne, F., and Sami, D., Hort. Sci., 2014, vol. 49, pp. 1003–1009.Google Scholar
  8. 8.
    Edwards, K., Johnstone, C., and Thompson, C., Nucleic Acids Res., 1991, vol. 19, no. 6, p. 1349.CrossRefGoogle Scholar
  9. 9.
    Slugina, M.A., Shchennikova, A.V., and Kochieva, E.Z., Mol. Genet. Genomics, 2017, vol. 292, no. 5, pp. 1123–1138.CrossRefGoogle Scholar
  10. 10.
    Slugina, M.A., Shchennikova, A.V., and Kochieva, E.Z., Plant Mol. Biol. Rep., 2018. https://doi.org/10.10- 07/s11105-018-1071-5.Google Scholar
  11. 11.
    100 Tomato Genome Sequencing Consortium, Plant J., 2014, vol. 80, no. 1, pp. 136–148.Google Scholar
  12. 12.
    Peralta, I.E., Spooner, D.M., and Knapp, S., Syst. Bot. Monogr., 2008, vol. 84, pp. 1–186.Google Scholar
  13. 13.
    Hou, H.M., Li, H.E., Gao, M., Wang, H., Jiao, C., and Wang, X.P., Genet. Mol. Res., 2013, vol. 12, no. 3, pp. 3830–3844.CrossRefGoogle Scholar
  14. 14.
    Krakowiak, A. and Fryc, I., Postepy Biochem., 2012, vol. 58, no. 3, pp. 302–313.Google Scholar
  15. 15.
    Bailey, T.M., Bodén, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., and Noble, W.S., Nucleic Acids Res., 2009, vol. 37, pp. 202–208.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. U. Tyapkina
    • 1
  • E. Z. Kochieva
    • 1
    • 2
  • M. A. Slugina
    • 1
    • 2
    Email author
  1. 1.Institute of Bioengineering, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiotechnologyMoscow State UniversityMoscowRussia

Personalised recommendations