Doklady Biochemistry and Biophysics

, Volume 483, Issue 1, pp 355–358 | Cite as

Comparison of the Functional Activities of Xanthine Oxidases Isolated from Microorganisms and from Cow’s Milk

  • A. S. Gorbunova
  • M. M. Borisova-Mubarakshina
  • I. A. Naydov
  • S. S. Osochuk
  • B. N. IvanovEmail author
Biochemistry, Biophysics, and Molecular Biology


The characteristics of the formation of the superoxide radical anion (\(\rm{O}_2^{\bullet-}\)) and hydrogen peroxide by xanthine oxidases isolated from microorganisms and from cow’s milk were investigated. The increase in pH led to an increase in the rate of xanthine oxidation with oxygen by both xanthine oxidases. The functioning of xanthine oxidase from milk along with the two-electron reduction of O2 to H2O2 carries through the one-electron reduction of O2 to \(\rm{O}_2^{\bullet-}\), and the rate and the fraction of generation of \(\rm{O}_2^{\bullet-}\) increased with increasing pH. Under operation of the microbial xanthine oxidase, the \(\rm{O}_2^{\bullet-}\) radical was not detected in the medium. The results suggest a difference in the operation of active centers of enzyme from different sources.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Battelli, M.G., Musiani, S., Valgimigli, M., Gramantieri, L., Tomassoni, F., Bolondi, L., and Stirpe, F., Am. J. Gastroenterol., 2001, vol. 96, pp. 1194–1199.CrossRefGoogle Scholar
  2. 2.
    Kozhemyakin, A.A., Antonov, V.G., Kalikanov, S.A., et al., Byull. Eksp. Biol. Med., 1992, vol. 113, pp. 138–139.Google Scholar
  3. 3.
    Berry, C.E. and Hare, J.M., J. Physiol., 2004, vol. 555, pp. 589–606.CrossRefGoogle Scholar
  4. 4.
    Kelley, E.E., Pharmacol. Rep., 2015, vol. 67, pp. 669–674.CrossRefGoogle Scholar
  5. 5.
    Sakuma, S., Abe, M., Kohda, T., and Fujimoto, Y., J. Clin. Biochem. Nutr., 2015, vol. 56, pp. 15–19.CrossRefGoogle Scholar
  6. 6.
    Stevens, C.R., Millar, T.M., Clinch, J.G., Kanczler, J., Bodamyali, T., and Blake, D.R., Lancet, 2000, vol. 356, pp. 829–830.CrossRefGoogle Scholar
  7. 7.
    Fridovich, I., Adv. Enzymol., 1974, vol. 41, p. 35.Google Scholar
  8. 8.
    Vartanyan, L.S. and Gurevich, S.M., Vopr. Med. Khim., 1982, vol. 5, pp. 23–56.Google Scholar
  9. 9.
    Ball, E.G., J. Biol. Chem., 1939, vol. 128, pp. 51–67.Google Scholar
  10. 10.
    Woolfolk, C.A. and Downard, J.S., J. Bacteriol., 1978, vol. 135, pp. 422–428.Google Scholar
  11. 11.
    Machida, Y. and Nakanashi, T., Agric. Biol. Chem., 1981, vol. 45, pp. 425–432.Google Scholar
  12. 12.
    Egwim, E.C., Vunchi, M.A., and Egwim, P.O., Bookemistri, 2005, vol. 17, pp. 1–6.Google Scholar
  13. 13.
    Kostic, D.A., Dimitrijevi, D.S., Stojanovi, G.S., Pali, I.R., Yorzevi, A.S., and Ickovski, J.D., J. Chem., 2015, vol. 2015, pp. 1–8.CrossRefGoogle Scholar
  14. 14.
    Kelley, E.E., Khoo, K.H.N., Hundley, J.N., Malik, Z.U., Freeman, B.A., and Tarpey, M.M., Free Radic. Biol. Med., 2010, vol. 48, pp. 493–498.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Gorbunova
    • 1
  • M. M. Borisova-Mubarakshina
    • 2
  • I. A. Naydov
    • 2
  • S. S. Osochuk
    • 3
  • B. N. Ivanov
    • 2
    Email author
  1. 1.Kazan (Volga) Federal UniversityKazanRussia
  2. 2.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow oblastRussia
  3. 3.Vitebsk State Medical UniversityVitebskRepublic of Belarus

Personalised recommendations