Advertisement

Doklady Biochemistry and Biophysics

, Volume 483, Issue 1, pp 344–347 | Cite as

Neonatal Lethality and Inflammatory Phenotype of the New Transgenic Mice with Overexpression of Human Interleukin-6 in Myeloid Cells

  • R. V. Zvartsev
  • D. S. Korshunova
  • E. A. Gorshkova
  • M. A. Nosenko
  • K. V. Korneev
  • O. G. Maksimenko
  • I. V. Korobko
  • D. V. Kuprash
  • M. S. DrutskayaEmail author
  • S. A. Nedospasov
  • A. V. Deikin
Biochemistry, Biophysics, and Molecular Biology

Abstract

To model human interleukin-6 (hIL-6) associated diseases, unique mice with transgenic overexpression of human IL-6 and reporter fluorescent protein EGFP in cells of macrophage-monocyte lineage were generated using loxP–Cre system. High level of hIL-6 production by macrophages and monocytes, as confirmed in vitro in primary culture of bone marrow-derived macrophages, in vivo resulted in early postnatal death in vivo, presumably, due to the effect of overexpression of hIL-6 on hematopoiesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Korneev, K.V., Sviryaeva, E.N., Drutskaya, M.S., Kuprash, D.V., and Nedospasov, S.A., Development of a system for the Cre-dependent induced production of human IL-6 in mouse and human cells, Ross. Immunol. Zh., 2016, vol. 10, no. 2 (19), pp. 188–192.Google Scholar
  2. 2.
    Gu, H., Zou, Y.R., and Rajewsky, K., Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre–loxP-mediated gene targeting. Cell, 1993, vol. 73, no. 6, pp. 1155–1164.CrossRefGoogle Scholar
  3. 3.
    Chung, J.H., Whiteley, M., and Felsenfeld, G., A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila, Cell, 1993, vol. 74, no. 3, pp. 505–514.CrossRefGoogle Scholar
  4. 4.
    Drutskaya, M.S., Nosenko, M.A., Atretkhany, K.-S.N., Efimov, G.A., and Nedospasov, S.A., Interleukin-6: from molecular mechanisms of signal transduction to physiological properties and therapeutic targeting, Mol. Biol. (Moscow), 2015, vol. 49, no. 6, pp. 837–842.CrossRefGoogle Scholar
  5. 5.
    Zvezdova, E.S., Silaeva, Yu.Yu., Vagida, M.S., Maryukhnich, E.V., Deikin, A.V., Ermolkevich, T.G., Kadulin, S.G., Sadchikova, E.R., Goldman, I.L., and Kazansky, D.B., Generation of transgenic animals expressing the and chains of the autoreactive T-cell receptor, Mol. Biol. (Moscow), 2010, vol. 44, no. 2, pp. 277–286.CrossRefGoogle Scholar
  6. 6.
    Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R., and Forster, I., Conditional gene targeting in macrophages and granulocytes using LysMcre mice, Transgenic Res., 1999, vol. 8, no. 4, pp. 265–277.CrossRefGoogle Scholar
  7. 7.
    Grivennikov, S.I., Tumanov, A.V., Liepinsh, D.J., Kruglov, A.A., Marakusha, B.I., Shakhov, A.N., Murakami, T., Drutskaya, L.N., Forster, I., Clausen, B.E., Tessarollo, L., Ryffel, B., Kuprash, D.V., and Nedospasov, S.A., Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/neutrophils: protective and deleterious effects, Immunity, 2005, vol. 22, no. 1, pp. 93–104.Google Scholar
  8. 8.
    Kyoizumi, S., Murray, L.J., and Namikawa, R., Preclinical analysis of cytokine therapy in the SCID-hu mouse, Blood, 1993, vol. 81, no. 6, pp. 1479–1488.Google Scholar
  9. 9.
    Ganz, T. and Nemeth, E., Iron homeostasis in host defence and inflammation, Nat. Rev. Immunol., 2015, vol. 15, no. 8, pp. 500–510.CrossRefGoogle Scholar
  10. 10.
    Metzger, D., Clifford, J., Chiba, H., and Chambon, P., Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, no. 15, pp. 6991–6995.CrossRefGoogle Scholar
  11. 11.
    Yona, S., Kim, K.W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D., Viukov, S., Guilliams, M., Misharin, A., Hume, D.A., Perlman, H., Malissen, B., Zelzer, E., and Jung, S., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, Immunity, 2013, vol. 38, no. 1, pp. 79–91.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • R. V. Zvartsev
    • 1
  • D. S. Korshunova
    • 2
  • E. A. Gorshkova
    • 1
    • 3
  • M. A. Nosenko
    • 1
    • 3
  • K. V. Korneev
    • 1
    • 3
  • O. G. Maksimenko
    • 2
  • I. V. Korobko
    • 2
  • D. V. Kuprash
    • 1
    • 3
  • M. S. Drutskaya
    • 1
    • 3
    Email author
  • S. A. Nedospasov
    • 1
    • 3
  • A. V. Deikin
    • 2
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Department of Immunology, Biological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations