Advertisement

Doklady Biochemistry and Biophysics

, Volume 483, Issue 1, pp 306–308 | Cite as

Differentiation of Monocytic Cells Is Accompanied by a Change in the Expression of the Set of Oct-1 Isoforms

  • A. G. Stepchenko
  • B. M. Lyanova
  • I. D. KrylovaEmail author
  • Yu. V. Ilyin
  • S. G. Georgieva
  • E. V. Pankratova
Biochemistry, Biophysics, and Molecular Biology
  • 5 Downloads

Abstract

Changes in the expression level of Oct-1A, Oct-1L, Oct-1X, and Oct-1Z isoforms and CD14 surface antigen during differentiation of HL-60 monocytic cells induced in vitro by dimethyl sulfoxide were studied, and the expression level of the four Oct-1 isoforms in vivo in human monocytes was determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sturm, R.A., Das, G., and Herr, W., The ubiquitous octamer-binding protein oct-1 contains a pou domain with a homeo box subdomain, Genes Dev., 1988, vol. 2, pp. 1582–1599.CrossRefGoogle Scholar
  2. 2.
    Pankratova, E.V., Stepchenko, A.G., Portseva, T., Mogila, V.A., and Georgieva, S.G., Different N-terminal isoforms of Oct-1 control expression of distinct sets of genes and their high levels in Namalwa Burkitt’s lymphoma cells affect a wide range of cellular processes, Nucleic Acids Res., 2016, vol. 44, pp. 9218–9230.Google Scholar
  3. 3.
    Falkner, F.G. and Zachau, H.G., Correct transcription of an immunoglobulin kappa gene requires an upstream fragment containing conserved sequence elements, Nature, 1984, vol. 310, no. 5972, pp. 71–74.CrossRefGoogle Scholar
  4. 4.
    Stepchenko, A.G., The nucleotide sequence of mouse OCT-1 cDNA, Nucleic Acids Res., 1992, vol. 20, no. 6, p. 1419.CrossRefGoogle Scholar
  5. 5.
    Krylova, I.D., Portseva, T.N., Georgieva, S.G., Stepchenko, A.G., and Pankratova, E.V., New mRNA isoform of Oct-1 transcription factor is transcribed from alternative promoter, Mol. Biol. (Moscow), 2013, vol. 47, no. 4, pp. 552–558.CrossRefGoogle Scholar
  6. 6.
    Portseva, T.N., Krylova, I.D., Georgieva, S.G., Stepchenko, A.G., and Pankratova, E.V., New alternative promoter in regulation of the Oct-1 human gene transcription, Dokl. Biochem. Biophys., 2013, vol. 449, pp. 72–74.CrossRefGoogle Scholar
  7. 7.
    Pankratova, E.V., Deyev, I.E., Zhenilo, S.V., and Polanovsky, O.L., Tissue-specific isoforms of the ubiquitous transcription factor Oct-1, Mol. Genet. Genom., 2001, vol. 266, no. 2, pp. 239–245.CrossRefGoogle Scholar
  8. 8.
    Luchina, N.N., Krivega, I.V., and Pankratova, E.V., Human Oct-1L isoform has tissue-specific expression pattern similar to Oct-2, Immunol. Lett, 2003, vol. 85, pp. 237–241.CrossRefGoogle Scholar
  9. 9.
    Stepchenko, A.G., Luchina, N.N., and Pankratova, E.V., Cysteine 50 of the POU H domain determines the range of targets recognized by POU proteins, Nucleic Acids Res., 1997, vol. 25, pp. 2847–2853.CrossRefGoogle Scholar
  10. 10.
    Bellance, N., Pabst, L., Allen, G., Rossignol, R., and Nagrath, D., Oncosecretomics coupled to bioenergetics identifies α-amino adipic acid, isoleucine and GABA as potential biomarkers of cancer: Differential expression of c-Myc, Oct1, and KLF4 coordinates metabolic changes, Biochim. Biophys. Acta, 2012, vol. 1817, pp. 2060–2071.CrossRefGoogle Scholar
  11. 11.
    Metcalf, D., Hematopoietic cytokines, Blood, 2008, vol. 111, pp. 485–491.CrossRefGoogle Scholar
  12. 12.
    Friedman, A.D., Transcriptional control of granulocyte and monocyte development, Oncogene, 2007, vol. 26, pp. 6816–6828.CrossRefGoogle Scholar
  13. 13.
    Murao, S., Gemmell, M.A., Callaham, M.F., Anderson, N.L., and Huberman, E., Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1,25-dihydroxyvitamin D3 and phorbol- 12-myristate-13-acetate, Cancer Res., 1983, vol. 43, pp. 4989–4996.Google Scholar
  14. 14.
    Lee, M.S., Son, M.Y., Park, J.I., Park, C., Lee, Y.C., Son, C.B., Kim, Y.S., Paik, S.G., Yoon, W.H., Park, S.K., Hwang, B.D., and Lim, K., Modification of octamer binding transcriptional factor is related to H2B histone gene repression during dimethyl sulfoxide-dependent differentiation of HL-60 cells, Cancer Lett., 2001, vol. 172, pp. 165–170.CrossRefGoogle Scholar
  15. 15.
    Padilla, P.I., Wada, A., Yahiro, K., Kimura, M., Niidome, T., Aoyagi, H., Kumatori, A., Anami, M., Hayashi, T., Fujisawa, J., Saito, H., Moss, J., and Hirayama, T., Morphologic differentiation of HL-60 cells is associated with appearance of RPTPbeta and induction of Helicobacter pylori VacA sensitivity, J. Biol. Chem., 2000, vol. 275, pp. 15200–15206.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. G. Stepchenko
    • 1
  • B. M. Lyanova
    • 1
  • I. D. Krylova
    • 1
    • 2
    Email author
  • Yu. V. Ilyin
    • 1
  • S. G. Georgieva
    • 1
  • E. V. Pankratova
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations